
Active Response

Solutions in this Chapter:

� Active Response vs. Intrusion Prevention

� Snortsam

� Fwsnort

� Snort_inline

Chapter 12

605

� Summary

� Solutions Fast Track

� Frequently Asked Questions

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 605

Introduction
Up to this point we have concentrated on aspects of classic rule-based intrusion
detection with the Snort Intrusion Detection System (IDS). It has been shown
that Snort provides an effective sentry for anomalous traffic and is an important
addition to the security architecture of most computer networks.Through proper
installation, configuration, and administration, Snort can push the security enve-
lope into the application layer where firewalls generally do not tread.

OINK!
Some commercial firewalls that do not fall into the application proxy
category (such as Check Point’s NG firewall) offer content inspection
and/or protocol validation at the application layer. Interestingly enough,
many vendors who previously insisted that in-depth application-layer
knowledge was unnecessary have started claiming that they’ve invented
a new idea that, when looked at closely, appears to be the equivalent of
an application-layer proxy.

However, detecting intrusions is a far cry from attempting to automatically
prevent them in the first place. None of the Snort configurations shown thus far
alter network traffic in any way as packets travel across the network. If a vulner-
able system is successfully exploited by a malicious host, then Snort may detect
and send an alert about the exploit but take no steps to alter or block packets
from the attacker. Hence the attacker can have full access and control (to the
level the exploit permits) of the target system until an administrator can manually
intervene. With a network of several hundred systems, the time lag between suc-
cessful compromise and such intervention can be quite long. Combine this with
the possibility that many similarly vulnerable systems may exist on the same net-
work and it is easy to see why automatically blocking attacks can be an attractive
capability if it could be done effectively.

In this chapter, we explore the concept of active response to intrusion detec-
tion events.Active response is the dynamic reconfiguration or alteration of net-
work access control mechanisms, sessions, or even individual packets based on
alerts generated from an IDS.

www.syngress.com

606 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 606

Active Response vs. Intrusion Prevention
If you are reading this chapter, then chances are good that you have heard the
term intrusion prevention in the context of network security. When referring to
network-based security techniques, the term network intrusion prevention is usually
applied to an inline device (such as an Ethernet bridge or firewall) that has the
capability of modifying or discarding individual attack packets as they traverse the
device interfaces. Unfortunately, this term has been redefined and abused by mar-
keting and sales teams to the point that many security professionals have an
allergic reaction when hearing it and refuse to have anything to do with it.This
is a shame, since there are legitimate uses for the term.There are also a number
of host-based tools in the increasingly inclusive “intrusion prevention” category,
but they are beyond the scope of a book about Snort.

In terms of packet modification, the goal is to nullify attacks that are leveraged
against internal devices connected to the Intrusion Prevention System (IPS). By
contrast, the term active response applies to any function that alters or blocks net-
work traffic as a result of intrusion detection events. Such functions do not neces-
sarily have to be implemented by an inline device. For example,TCP sessions can
be torn down through the use of a spoofed reset packet sent by the IDS, or they can
be interrupted by modifying the access control lists (ACLs) on a router or firewall
to completely block the IP address from which attacks originate. However, such
capabilities are not considered strong enough to fall into the IPS realm since cer-
tain types of attacks can accomplish just as much damage regardless of whether
such capabilities are deployed on a network.A good example of such an attack is
the Slammer worm of 2003.The entire attack was contained within a single 404-
byte packet to UDP port 1434, which exploited a vulnerability in Microsoft’s SQL
Server (see www.cs.berkeley.edu/~nweaver/sapphire/ for a good analysis of the
propagation of the Slammer worm).Actively responding to such a packet after it
enters a network is not good enough in this case.The only way to mitigate the
effects of attack is to prevent the exploit packet from making it into the network in
the first place. SQL Slammer is also an example of the kind of attack that is ideal
for a Network IPS (NIPS) to deal with. It uses a small number of packets that
allow the NIPS to not have to maintain extensive state, while at the same time the
purpose of the packet(s) can be unambiguously identified. In general, the capabili-
ties of an IPS can be thought of as the most potent and potentially hazardous
subset of active response functions.

www.syngress.com

Active Response • Chapter 12 607

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 607

Active Response Based on Layers
The goal of active response is to automatically respond to a detected attack and
minimize (or ideally nullify) the damaging effects of attempted computer intru-
sions without requiring an administrator. In general, there are four different
strategies for network-based active response; each corresponding to a different
layer of the protocol stack starting with the data link layer:

� Data link Administratively disable the switch port over which the
attack is carried.

� Network Alter a firewall policy or router ACL to block all packets to
or from the attacker’s Internet Protocol (IP) address.

� Transport Generate Transmission Control Protocol (TCP) resets for
attacks using TCP protocol methods or Internet Control Message
Protocol (ICMP) port unreachable messages, for attacks sent over the User
Datagram Protocol (UDP). For ICMP, recall that ICMP is a network-
layer protocol, and hence it is only possible to block ICMP at the
network layer.

� Application Alter the data portion of individual packets from the
attacker. For example, if the attacker has provided a path to a shell
“/bin/sh,” then change the packet so that the path points to a location
that does not exist on the target system—such as “/ben/sh”—before the
packet reaches the target. Note that this method may require the recal-
culation of the transport-layer checksum (mandatory for TCP and
optional for UDP unless the checksum was previously calculated).

This chapter discusses three software applications; Snortsam, Fwsnort, and
Snort_inline. Each of these implements active response capabilities based on the
Snort IDS.These applications alter or block traffic by IP address (Snortsam), by
transport-layer protocol (Fwsnort), and by application layer (Snort_inline). We
will show how each active response application deals with a reconnaissance attack
against the “WWWboard” discussion forum running on an Apache Web server,
and a buffer overflow exploit in the NFS mountd daemon.

Deploying active response capabilities on a network requires extremely
careful tuning and a healthy awareness of the risks involved. One of the chief
problems with IDSs today is that false positives are commonplace, even from the
most finely tuned IDS. It is simply impossible to avoid false positives when legiti-
mate traffic can potentially contain some of the same characteristic signatures as

www.syngress.com

608 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 608

malicious traffic. Hence, there is always the possibility that an active response
system will block traffic that really should be allowed through. On a more sinister
note, if an attacker discovers that active response is in use on a network, it may
be possible for the attacker to subvert the response system into effectively cre-
ating a denial of service (DoS) against the network by making it appear as
though attacks are coming from legitimate sources.The attacker accomplishes
this by sending attack packets (or attack-like packets) from faked sources, such
that the automated active response blocks legitimate traffic from those sources.

OINK!
This risk of self-imposed DoS is one of the primary reasons why many
corporations are hesitant to implement active response mechanisms.
Most tools that offer active response (including the ones mentioned
here) also offer the capability to define traffic that should never be
blocked (a.k.a. whitelists). If the product you choose to implement
doesn’t offer this capability, you might want to think twice about it.
Don’t make the cure worse than the disease.

Altering Network Traffic Based on IDS Alerts
As packets are routed from one network to another, a gateway device (either a fire-
wall or router) will have the opportunity to examine the packets and decide
whether they are fit to be forwarded on to the next hop.Any active response
system must either interface locally or remotely with this gateway device in order
to influence the routing decision, or traffic must be routed through the active
response system itself.The former strategy is employed by Snortsam, while the
latter strategy is employed by both Fwsnort, which is deployed directly within an
IPtables firewall, and Snort_inline, which is usually deployed on a bridge between
two network segments.An inline active response system has the capability of nulli-
fying attacks themselves instead of simply modifying router ACLs or firewall poli-
cies to block an attacker’s source IP address. Hence, Snortsam is an active response
system, whereas both Fwsnort and Snort_inline fall into the IPS category.

www.syngress.com

Active Response • Chapter 12 609

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 609

OINK!
Just as the capability to directly interact with the flow of traffic increases
as we move from Snortsam to Fwsnort to Snort_inline, so does the
potential impact if the system monitoring traffic is compromised. Of the
three active response systems, Snortsam is the only one that lets you
stay relatively safe behind a network tap or a span port on a switch and
thus remain nearly inaccessible to an attacker. Be careful! The last thing
you want is to have your firewall/IPS compromised because of a newly
discovered vulnerability in IPtables, Snort_inline, or in the libraries each
of these applications use.

Snortsam
Snortsam is an active response system that interacts with both commercial and
open-source firewalls to block IP addresses at the direction of a modified version
of the Snort IDS. Snortsam supports a flexible time specification for blocked
addresses so that IPs can be blocked for a period of seconds, minutes, hours, days,
weeks, or even years. Snortsam runs as a daemon on the firewall host and accepts
commands from a special output plug-in for the Snort IDS over an encrypted
TCP session. Snortsam, written by Frank Knobbe, is free and open-source soft-
ware released under the GNU Public License (GPL).

Fwsnort
Fwsnort translates the signature rules in the Snort IDS into an equivalent IPtables
ruleset in the Linux kernel.Through the capability of IPtables to filter packets
based on characteristics of the network and transport headers as well as applica-
tion-layer data, Fwsnort is capable of translating nearly 70 percent of all Snort
rules into an equivalent IPtables policy.Attacks are defined by the powerful Snort
ruleset and can then be logged and/or dropped directly by IPtables. Fwsnort
functions as a basic IPS, since it is deployed within IPtables and hence runs inline
with any network protected by the firewall. Michael Rash, a coauthor of this
book, wrote Fwsnort, based on William Stearns’ snort2iptables script.

Snort_inline
Snort_inline falls squarely into the intrusion prevention category. It is fundamen-
tally built upon the Snort IDS to detect attacks, but it adds an important feature:

www.syngress.com

610 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 610

the capability to alter or drop packets as they flow through the host. Snort_inline
makes use of packet queuing in IPtables to allow Snort to make the decision about
what to do with individual packets as they traverse the interfaces of a Linux system
that is acting as either a router or an Ethernet bridge.The Honeynet Project
(http://project.honeynet.org) uses Snort_inline as an important research tool, and
has been released by Jed Haile under the GPL as open-source software.

Attack and Response
It is the goal of this chapter to show how Snortsam, Fwsnort, and Snort_inline
each protect a network from two specific attacks; the first against a Web server and
the second against an NFS server.The Web server attack is derived from Snort ID
(SID) 807, which Snort identifies as “WEB-CGI /wwwboard/passwd.txt access.”
The NFS attack is derived from SID 316 and is identified as an “EXPLOIT x86
Linux mountd overflow.”These two attacks generate relatively low rates of false
positives and hence make good candidates for the type of traffic to which an IPS
should be configured to respond. One caveat to note is that as in the case of the
Slammer worm, an active response system that is not inline will not be able to stop
either of these attacks from being successful initially, although subsequent access
from the attacker’s source IP address will be blocked. First, we will examine packet
traces of the attacks under normal conditions without any active response capa-
bility enabled, and then we will execute the same set of attacks with each of our
three active response systems protecting the network in turn and see how the
packet traces are changed.We assume that the reader has some familiarity with the
TCP, UDP, and ICMP protocols. Complete information about these protocols can
be found in the protocol Request for Comments (RFC); specifically, numbers 793,
768, and 792, which can be downloaded from www.ibiblio.org/pub/docs/rfc.

For our attack simulations, we will refer to the network diagram in Figure
12.1.This network architecture will be used as a general guide throughout this
chapter, but significant modifications will be made where necessary and will be
accompanied by additional diagrams. In all cases, the attacks will be executed from
evilhost against either the Web server or the NFS server. Note that Figure 12.1 is
used strictly for illustration purposes and is relatively simple.All hosts in Figure
12.1, including the firewall, are Linux systems running kernel 2.4.24, and the fire-
wall is running IPtables-1.2.9.The three network interfaces on the firewall are each
connected to a different network. One interface is connected to the external net-
work with IP 68.48.x.x, a second is connected to the internal network for the Web
and NFS servers with IP 192.168.10.1, and the third is connected to a separate

www.syngress.com

Active Response • Chapter 12 611

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 611

management network for the Snort box with IP 192.168.20.1.The line labeled
“sniffing link” connects one interface on the dual-homed Snort box to the Web
server network.There is no IP address assigned to this interface and no traffic is
sent out from it. For simplicity, a hub is used instead of a switch so the Snort
system will not have any trouble seeing packets from all connected systems.This
could also be done using a network TAP and then either aggregating the data via a
switch or by binding the ports on the sensor itself.The most likely architecture for
a larger network is to connect the Snort system into a span port on a switch.The
firewall performs Network Address Translation (NAT), both for the internal net-
work to connect out to the Internet and for external connections to TCP port 80
and UDP ports 111 and 32000–34000 being sent to the Web server or NFS server,
respectively.

www.syngress.com

612 Chapter 12 • Active Response

Figure 12.1 Network Architecture

evilhost
(207.174.x.x)

Intnernet

firewall (68.48.x.x)

Web server
(192.168.10.20)

NFS server
(192.168.10.30)

Snort IDS
(192.168.20.2)

hub192.168.10.1

sniffing
link

192.168.20.1

switch

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 612

Tools & Traps…

tcpdump Options
All packet traces in this chapter are taken with the venerable tcpdump
Ethernet sniffer. Among the more important options used are the –s
option, which allows us to extend the number of bytes tcpdump captures
for each packet beyond the default of 68, and the –X option, which prints
ASCII characters that correspond to hex codes in application-layer data.
Note that although we could have used Snort to generate our packet
traces, tcpdump is installed by default on more operating systems than
Snort so we chose to use tcpdump instead.

Web Server WWWBoard passwd.txt Access
The WWWBoard passwd.txt access attack falls in the attempted-recon category in
the Snort rule file web-cgi.rules, and hence such an attack does not directly
result in remote access. It is an information-gathering attack that could be used
to eventually gain admin privileges to the WWWBoard forum software if the
administrator password contained within passwd.txt is weak and can be success-
fully cracked. Executing this attack is particularly easy from the command line
with the program wget. wget has many command-line options to control nearly
every aspect of connecting to a Web server, from recursively archiving entire Web
sites to controlling connection timeouts. One of the most important features of
wget for our purposes is the capability to output verbose error codes and show
exactly what is happening at a connection level when interacting with a Web
server. It is the ideal tool to execute the attack in SID 807. First, let’s look at the
Snort rule for SID 807 from the Snort rules file web-cgi.rules (see Figure 12.2).

Figure 12.2 WWWBoard passwd.txt Access Snort Rule (SID 807)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI

/wwwboard/passwd.txt access"; flow:to_server,established;

uricontent:"/wwwboard/passwd.txt"; nocase; reference:arachnids,463;

reference:cve,CVE 1999-0953; reference:nessus,10321; reference:bugtraq,649;

classtype:attempted-recon; sid:807; rev:7;)

www.syngress.com

Active Response • Chapter 12 613

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 613

In the msg field, we can see that Snort will send the alert string “WEB-CGI
/wwwboard/passwd.txt access” whenever any Web server on the internal net-
work is sent the string “/wwwboard/passwd.txt” as part of a Web request.

Hence, to execute such an attack from evilhost against the Web server in
Figure 12.1, we issue the wget command in Figure 12.3. Note the use of the –O
option to instruct wget to store any output from the Web server in the local file
passwd.txt, and the –t option to tell wget to only try connecting once to the
Web server before it gives up.

Figure 12.3 WWWBoard passwd.txt Access Attack

[evilhost]$ wget –O passwd.txt –t 1 http://68.48.x.x/wwwboard/passwd.txt

--10:31:14-- http://68.48.x.x/wwwboard/passwd.txt

=> `passwd.txt'

Connecting to 68.48.x.x:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 23 [text/plain]

100%[==>] 23 22.46K/s

ETA 00:00

10:31:14 (22.46 KB/s) - `passwd.txt' saved [23/23]

The wget command results in the packet trace shown in Figure 12.4 taken on
the external interface of the firewall. Some packet content and header informa-
tion has been removed for brevity.

Figure 12.4 WWWBoard passwd.txt Access Packet Trace

[firewall]# tcpdump –i eth0 –l –n –X –s 1500 port 80

204.174.x.x.53573 > 68.48.x.x.80: S 3728595109:3728595109(0) win 5840

68.48.x.x.80 > 204.174.x.x.53573: S 2523514769:2523514769(0) ack 3728595110

win 5792

204.174.x.x.53573 > 68.48.x.x.80: . ack 1 win 5840

204.174.x.x.53573 > 68.48.x.x.80: P 1:119(118) ack 1 win 5840

0x0000 4500 0000 0000 4000 3206 2a68 ccae df18 E....o@.2.*h....

0x0010 0000 0000 d145 0050 de3d d8a6 9669 c792 =...i..

0x0020 8018 0000 0000 0000 0101 080a 0000 0000

0x0030 0064 55f3 4745 5420 2f77 7777 626f 6172 .dU.GET./wwwboar

www.syngress.com

614 Chapter 12 • Active Response

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 614

Figure 12.4 WWWBoard passwd.txt Access Packet Trace

0x0040 642f 7061 7373 7764 2e74 7874 2048 5454 d/passwd.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e78 782e 7878 ost:.68.48.xx.xx

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

68.48.x.x.80 > 204.174.x.x.53573: . ack 119 win 5792

68.48.x.x.80 > 204.174.x.x.53573: P 1:358(357) ack 119 win 5792

0x0000 4500 0199 9270 4000 3f06 6778 0000 0000 E....p@.?.gx....

0x0010 ccae 0000 0000 d145 9669 c792 de3d d91c P.E.i...=..

0x0020 8018 16a0 2fa9 0000 0101 080a 0064 55fe /........dU.

0x0030 0000 0000 4854 5450 2f31 2e31 2032 3030 HTTP/1.1.200

0x0040 204f 4b0d 0a44 6174 653a 2054 7565 2c20 .OK..Date:.Tue,.

0x0050 3330 204d 6172 2032 3030 3420 3138 3a34 30.Mar.2004.18:4

0x0060 303a 3432 2047 4d54 0d0a 5365 7276 6572 0:42.GMT..Server

0x0070 3a20 4170 6163 6865 2f32 2e30 2e34 3820 :.Apache/2.0.48.

0x0080 2855 6e69 7829 206d 6f64 5f73 736c 2f32 (Unix).mod_ssl/2

0x0090 2e30 2e34 3820 4f70 656e 5353 4c2f 302e .0.48.OpenSSL/0.

0x00a0 392e 3763 0d0a 4c61 7374 2d4d 6f64 6966 9.7c..Last-Modif

0x00b0 6965 643a 2054 7565 2c20 3330 204d 6172 ied:.Tue,.30.Mar

0x00c0 2032 3030 3420 3136 3a32 383a 3231 2047 .2004.16:28:21.G

0x00d0 4d54 0d0a 4554 6167 3a20 2234 6234 3031 MT..ETag:."4b401

0x00e0 2d31 372d 6237 6463 3933 3430 220d 0a41 -17-b7dc9340"..A

0x00f0 6363 6570 742d 5261 6e67 6573 3a20 6279 ccept-Ranges:.by

0x0100 7465 730d 0a43 6f6e 7465 6e74 2d4c 656e tes..Content-Len

0x0110 6774 683a 2032 330d 0a4b 6565 702d 416c gth:.23..Keep-Al

0x0120 6976 653a 2074 696d 656f 7574 3d31 352c ive:.timeout=15,

0x0130 206d 6178 3d31 3030 0d0a 436f 6e6e 6563 .max=100..Connec

0x0140 7469 6f6e 3a20 4b65 6570 2d41 6c69 7665 tion:.Keep-Alive

0x0150 0d0a 436f 6e74 656e 742d 5479 7065 3a20 ..Content-Type:.

0x0160 7465 7874 2f70 6c61 696e 3b20 6368 6172 text/plain;.char

0x0170 7365 743d 4953 4f2d 3838 3539 2d31 0d0a set=ISO-8859-1..

0x0180 0d0a 5765 6241 646d 696e 3a61 6570 544f ..WebAdmin:aepTO

0x0190 7178 4f69 3469 3855 0a qxOi4i8U.

www.syngress.com

Active Response • Chapter 12 615

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 615

Figure 12.4 WWWBoard passwd.txt Access Packet Trace

204.174.x.x.53573 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.53573 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.53573: F 358:358(0) ack 120 win 5792

204.174.x.x.53573 > 68.48.x.x.80: . ack 359 win 6432

After we see the three-way TCP handshake that establishes the TCP connec-
tion between the wget client and the Web server we see the client request fol-
lowed by the Web server response.The most important feature to note about the
packet trace in Figure 12.4 (other than the obvious packet data) is the sequence
acknowledgment numbers. Each of these numbers is the expected sequence
number of the next data in the other direction of the TCP connection (more
information can be found in RFC 793 and in the tcpdump man page). In this
packet trace, the acknowledgment numbers indicate that the data from each
packet successfully traversed the TCP connection from the client to the server
and vice versa; no retransmissions are necessary.A quick examination of the con-
tents of the file passwd.txt on evilhost shows that the attack packet(s) were given
carte blanche access to the Web server.

[evilhost]$ cat passwd.txt

WebAdmin:aepTOqxOi4i8U

One layer of security has been defeated.The attacker is now free to run his
favorite password-cracking software in an effort to recover the WWWBoard
admin password.

NFS Mountd Exploit
The mountd buffer overflow exploit is much more dangerous than the
WWWBoard passwd.txt access in the previous example. Successful exploitation
results in full remote root shell access to any system that is running a vulnerable
version of mountd. For our attack example, we will use an exploit that you can
download from:

http://downloads.securityfocus.com/vulnerabilities/exploits/linux-mountd.c

To get this exploit working, you will need access to both the rpcgen and gcc
compilers, and you will need to split the linux-mountd.c file into the files
makeit, nfsmount.x, and nfsmount.c according to the comments in the code
before running the makeit shell script. If it builds properly on your system after

www.syngress.com

616 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 616

running ./makeit (probably easiest on Linux), you will end up with a compiled
exploit binary mx in the local directory.The exploit itself executes a buffer over-
flow attack against the logging code in mountd, which (ironically) is supposed to
log unauthorized mount attempts.The payload of the attack appends a new UID
0 (root) user to the /etc/passwd file and also appends the line “ALL:ALL” to the
file /etc/hosts.allow, but the exploit payload can be modified to instruct the hap-
less server to perform arbitrary tasks as root. Executing the attack is as simple as
running the command:

./mx <target_host>

NFS is implemented as a binary protocol.This implies that Snort rules for
mountd exploits will frequently have to look for nonprintable characters in net-
work traffic.As we discussed in Chapter 5,“Playing by the Rules,” such charac-
ters can easily be included within the content field in a Snort rule as blocks of
hexadecimal codes enclosed within pipe “|” characters. Let’s take a look at the
Snort rule designed to detect when the mountd overflow exploit is being sent
across the network to an NFS server.

Figure 12.5 shows that if the hex codes “eb56 5E56 5656 31d2 8856 0b88
561e” travel across the network to UDP port 635 on the NFS server, we should
trigger the “EXPLOIT x86 Linux mountd overflow” alert from Snort. Note that
the exploit code we downloaded actually talks to the portmap daemon on the
NFS server first to be given a random high UDP port to then connect to the
mountd daemon via Remote Procedure Calls (RPCs) over UDP. Hence, the
stock Snort rule will not catch the attack as is, since it is strictly limited to traffic
that travels over port 635.Thus, for our configuration we change “635” to “any.”
Now let’s send our mountd attack across the network and examine a packet trace
taken on the external interface of the firewall in Figure 12.6.Again, some header
and packet data has been removed for brevity.

Figure 12.5 NFS mountd Overflow Snort Rule (SID 316)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd

overflow"; content:"|eb56 5E56 5656 31d2 8856 0b88 561e|";

reference:cve,CVE-1999-0002; reference:bugtraq,121; classtype:attempted-

admin; sid:316; rev:3;)

www.syngress.com

Active Response • Chapter 12 617

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 617

Figure 12.6 Mountd Overflow Attack and Packet Trace

[evilhost]$./mx 68.48.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 68.48.x.x

[firewall]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

15:53:59.266187 204.174.x.x.33854 > 68.48.x.x.sunrpc: udp 56 (DF)

15:53:59.267033 68.48.x.x.sunrpc > 204.174.x.x.33854: udp 28 (DF)

15:53:59.267662 204.174.x.x.33854 > 68.48.x.x.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b >...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53 (@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8 orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 eb56 5e56 5656 31d2 8856 0b88V^VVV1..V..

0x0380 561e 8856 2788 5638 b20a 8856 1d88 5626 V..V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b006 1.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

www.syngress.com

618 Chapter 12 • Active Response

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 618

Figure 12.6 Mountd Overflow Attack and Packet Trace

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

15:53:59.268454 68.48.x.x.32772 > 204.174.x.x.33854: udp 28 (DF)

tcpdump decodes the packet application layer and clearly shows us the hex
codes (shown in bold) Snort is looking for to detect the attack.Also displayed
are the buffer-filling hex codes “90” (some have been removed for brevity) fol-
lowed by the exploit payload. Note that UDP is a connectionless protocol, so there
are no data sequence numbers or acknowledgement packets as in TCP.

Snortsam
Snortsam is the first of the three active response systems we will examine and is the
easiest to deploy and most flexible of the lot. Snortsam consists of two compo-
nents: an output plug-in for Snort itself that is implemented as a patch to the Snort
source code, and an agent that runs on the firewall host and listens for commands
from the output plug-in over the network.The agent is responsible for interacting
with the firewall to dynamically block IP addresses from which Snort has detected
an attack. Supported firewalls include commercial offerings such as Check Point
FW-1, Cisco PIX, Netscreen,WatchGuard, and open-source firewalls that are built
in to many modern open-source kernels, including Ipf on FreeBSD, Pf on
OpenBSD, and IPtables on Linux. For a complete listing of all firewalls supported
by Snortsam, visit the Snortsam Web site at www.snortsam.net.An important fea-
ture offered by Snortsam is the capability to define a whitelist of individual IP
addresses or entire networks that should never be blocked even if the Snort output
plug-in generates an alert with a source address falling within this list.As men-
tioned later in this section, the whitelist is defined in the Snortsam config file using
the “dontblock” directive, but this feature is so important that we wanted to call
your attention to it early in the Snortsam discussion since this option is important
to tuning Snortsam to behave properly in your network. For example, good candi-
date IP addresses that should potentially be included in a whitelist are the upstream
router from the firewall and the internal server IP addresses.

Installation
Snortsam is distributed as open-source software, and hence the most common
method of installation involves compiling the source code for the specific archi-
tecture of the system(s) on which it will be deployed. However, precompiled

www.syngress.com

Active Response • Chapter 12 619

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 619

binaries are distributed on the Snortsam Web site. For this discussion, we will
both compile Snortsam from source and apply the output plug-in patch to
Snort.

1. Download the source Snortsam source and Snort patch tarballs
(snortsam-src-2.23.tar.gz and snortsam-patch.tar.gz) from
www.snortsam.net/download.html, or copy them off the CD-ROM
that accompanies this book.As of this writing the latest version of
Snortsam is 2.23.

2. Copy snortsam-2.23.tar.gz to /usr/local/src on a machine running the
same operating system as the firewall host, extract it, and run
./makesnortsam.sh from the /usr/local/src/snortsam directory. Once the
compilation finishes, the resulting Snortsam binary can be copied to a
system directory such as /usr/local/sbin on the firewall host.You will
also need to create a configuration file for Snortsam. See Figure 12.8 for
a discussion of the more important Snortsam configuration options.
Note that since the daemon portion of Snortsam listens for connections
from the corresponding Snort output plug-in, you may need to modify
the firewall policy to allow such connections from the Snort system on
your internal network. By default, the connections travel over TCP port
898 to the firewall.

3. Copy snortsam-patch.tar.gz to /usr/local/src on the Snort box, extract
it, and run ./patchsnort.sh /usr/local/src/snort-2.1.This assumes that the
Snort-2.1 source is located in the /usr/local/src/snort-2.1 directory. If
the patch applies cleanly and the Snortsam output plug-in code has
been added, it is time to recompile Snort (Chapter 3,“Installing Snort,”
contains detailed information about how to compile and install Snort).

OINK!
As mentioned in previous chapters, a compiler should never be installed
on either the firewall or the IDS. Some options for implementing a hard-
ened sensor are discussed in Chapter 3, but an in-depth discussion of
operating system security hardening is beyond the scope of this book.

www.syngress.com

620 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 620

Architecture
Recall that Snortsam consists of two main components: an output plug-in for
Snort and a blocking agent that runs on the firewall host and interacts directly
with the firewall itself. For the remainder of the Snortsam section, we will use
the network diagram in Figure 12.1 as a reference.

Snort Output Plug-In
Snortsam output plug-in for Snort requires modification to both the Snort
config file and to individual Snort rules.The output plug-in will communicate to
the Snortsam agent running on the firewall over TCP port 898 whenever an IP
address trips a signature deemed heinous enough to make all other communica-
tion from the IP unfit to enter the network.The output plug-in supports
encrypted communication to the blocking agent with a custom key defined
within config files at both ends of the communication channel.To make
Snortsam active, we add the following line to snort.conf:

output alert_fwsam: 192.168.10.1/sn0r3sam

Note that the password sn0r3sam is the encryption key used to set up com-
munication to the blocking agent in this configuration. Obviously, you will need
to take special steps to protect the Snortsam config file since it now contains an
encryption key. In addition to this modification, we must now also have a way to
inform Snort about which specific rules should trigger a blocking action.This is
accomplished by adding a new rule option fwsam together with a timeout to
each such Snort rule. For example, suppose that we want to block all IP addresses
for a period of one hour that trigger the “WEB-CGI /wwwboard/passwd.txt
access” alert.To do so, we would append the string “fwsam: src, 1 hour;” to sid
807 in the web-cgi.rules file as in Figure 12.7.

OINK!
The length of time you have each block in place should be carefully con-
sidered! You need to balance the impact that frequently modifying your
firewall policy will have against the potential impact of having a bad
blocking rule in place for a long time. A rule that temporarily blocks
important traffic may be okay if it only lasts a couple minutes, but you
usually don’t want it to be in place for days or weeks. When considering
this, it is important to remember that an attempted exploit will generally

www.syngress.com

Active Response • Chapter 12 621

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 621

happen in seconds or minutes. This means that the block may not need
to last much longer than that to be effective. Moreover, there could be
potential network performance implications if Snortsam is configured to
block IP addresses based on DoS signatures that get tripped thousands
of times and your firewall ruleset grows past the number of rules that is
“healthy” for the firewall to handle. The question of proper tuning of
the Snort ruleset for Snortsam response raises its head again.

Figure 12.7 Modified WWWBoard passwd.txt Access Snort Rule (SID 807)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI

/wwwboard/passwd.txt access"; flow:to_server,established;

uricontent:"/wwwboard/passwd.txt"; nocase; reference:arachnids,463;

reference:cve,CVE 1999-0953; reference:nessus,10321; reference:bugtraq,649;

classtype:attempted-recon; sid:807; rev:7; fwsam: src, 1 hour;)

Blocking Agent
The Snortsam blocking agent is charged with interacting directly with the fire-
wall software on behalf of the Snort output plug-in. If Snort detects an attack
that matches any Snort rule that has the fwsam field as in Figure 12.7, then an
encrypted TCP session will be established with the blocking agent and a message
will be sent that contains the source IP from the packets that caused the alert and
a timeout value that informs the blocking agent about the length of time the IP
should be blocked. Note that the firewall must allow the Snort output plug-in to
connect to TCP port 898 (or whatever port you configure it to communicate
over) for the Snortsam communication to work.The blocking agent maintains
the state of all blocked IP addresses within the file /var/log/snortsam.state.This
file is referenced during startup and is used to avoid duplicating blocking rules if
the agent has been stopped and restarted for any reason.

The Snortsam blocking agent accepts several directives in its configuration
file that control many aspects of operation, such as which firewall interface rules
should be applied, which local IP address the agent should listen on, an encryp-
tion key for Snort sensor communications, and so forth.The configuration file is
normally located at /etc/snortsam.conf, and Figure 12.8 lists some of the more
important options that may be used in the configuration file.

www.syngress.com

622 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 622

OINK!
It is critical to remember that Snortsam sends the source IP for the alert
that generates the firewall or router change. This means that you need to
be certain that all Snort rules to which you add active response list the
attacking host as the packet’s source. If you don’t, you may find that you
are blocking your own servers rather than the systems attacking them.

� Accept Allows specific Snort sensors to communicate with the
blocking agent on the firewall. Multiple Snort sensors can be specified
with this option, and each can have a different encryption key in the
following syntax: accept <host>/<mask>, <key>.

� Defaultkey Sets the default encryption key that will be used for all
Snort sensors if a custom key is not specified with the accept directive.

� Port Sets the port number the blocking agent will use to listen for
connections from Snort sensors.The default port is TCP 898.

� Dontblock Specify a host (or network) that will be ignored even if
Snort detects an attack originating from it.

� Logfile Specifies the path to a logfile to which Snortsam will write log
messages.This file will list all IP addresses that Snortsam blocks along
with the specified length of time.

� Daemon Runs the blocking agent as a daemon. Most administrators
will want to include this option if Snortsam is to be deployed on a pro-
duction system.

� Bindip Limits the blocking agent to listen on (bind to) an IP address
associated with a single interface on the firewall instead of listening on
all interfaces.This decreases the chances that an attacker can compromise
the blocking agent itself since it decreases the number of accessible paths
to the blocking agent.You should almost always set this option.

� <firewall> <interface> Specifies the type of firewall the blocking
agent is running on and the interface to which blocking rules should be
added. Supported firewall types are IPtables, IPchains, Netscreen Ipf, Pf,
Pix, Ciscoacl, Opsec (for Check Point), and Watchguard.

www.syngress.com

Active Response • Chapter 12 623

Figure 12.8 Snortsam Configuration Options

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 623

Snortsam supports many additional configuration options that are not listed
in Figure 12.8, but a complete listing is beyond the scope of this book. More
information can be found in the file README.conf in the Snortsam sources.
Given the configuration options with which we are familiar, we construct a
sample Snortsam configuration file that we will refer to for the remainder of the
Snortsam section (see Figure 12.9). Recall that the IP addresses listed in this con-
figuration file are taken from the network diagram in Figure 12.1.

Figure 12.9 /etc/snortsam.conf

accept 192.168.20.3, sn0r3sam

bindip 192.168.20.1

iptables eth0

logfile /var/log/snortsam.log

daemon

Snortsam in Action
Now that we have a clear understanding of the architecture employed by
Snortsam, let’s dive into two juicy examples.We will launch the same attacks
against the Web server and NFS server that we employed in Figures 12.3 and 12.6.
This time, Snortsam will be deployed and active on both the firewall host and the
Snort IDS box.We will examine packet traces of the attacks while Snortsam is
actively blocking IP addresses, and we will illustrate how the IPtables policy on the
firewall is modified.We will also show the logging and state capabilities of
Snortsam as the attacks are detected and blocked.The Snortsam blocking agent
requires the same level of privilege on a system as the administrative user who can
modify the firewall ruleset. Normally, this means Snortsam must run a root (or
other UID 0 account). In our configuration, Snortsam writes all logging messages
to the file /var/log/snortsam.log, and writes state information about the IP
addresses and lengths of time they are to be blocked to the file
/var/log/snortsam.state.Troubleshooting Snortsam frequently involves removing
the snortsam.state file and restarting Snortsam. If Snortsam has already blocked an
IP address because it has tripped a Snort rule, then Snortsam will not attempt to
block the IP again until the predetermined timeout has expired.This behavior sur-
vives restarts of the Snortsam blocking agent through the use of the snortsam.state
file.To make Snortsam active at boot time, you will want to add a command like
“/usr/sbin/snortsam /etc/snortsam.conf” to the appropriate init script.

www.syngress.com

624 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 624

Damage & Defense…

Tuning Active Response
There are some difficult questions looming on the horizon that one can
raise about tuning active response. If someone leverages an attack against
a machine in a network where the target system is absolutely not vulner-
able to the attack, should the attacker be automatically blocked? Should
the IDS even generate an alert for such an event? There are no easy
answers to these questions. On the one hand, it is important to reduce
the number of events produced by an IDS because false positives are com-
monly generated, and yet at the same time, if someone is sending a
buffer overflow attack against a system, such an event might be impor-
tant to know about even if it has no chance of working. Ideally, an intru-
sion detection system should only generate alerts for the events you care
about, and an active response should only be used in the case of events
where you are highly confident that you won’t see false positives and
where there is a clear need to prevent the attempted attack from being
completed. You may care that an attempted attack has taken place, but if
you know that you aren’t vulnerable, it simply doesn’t make any sense to
reconfigure your firewall or router to respond to it. This is doubly true
when we consider the DoS possibilities, whereby an attacker who wants
to cut off your network’s access to a particular IP address sends attack
packets that match your active defense rules, with the packet’s source set
to that IP.

The bottom line is that the proper configuration of a network intru-
sion detection system is highly dependent on both the network charac-
teristics (general topology, operating systems, versions of applications,
and so forth) and the desires of the human administrators who will be
charged with taking actions based on IDS alerts. In the case of active
response, the humans are taken out of the loop, and so the burden of
perfection should be even higher on the data provided by the IDS. Having
said all of this, it is the goal of this chapter to illustrate the capabilities of
active response; the decision about whether to deploy such functionality
is highly subjective and is left to the IDS administrator.

Now, let’s fire up the Snortsam agent on the firewall and the patched version
of Snort on the IDS box (refer again to Figure 12.1) and see how this changes

www.syngress.com

Active Response • Chapter 12 625

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 625

things. We will use the Snortsam configuration file in Figure 12.9, which tells
Snortsam to accept connections from the Snort box, listen only on the interface
associated with the 192.168.20.1 IP on the firewall, apply IPtables blocking rules
to the external interface (eth0), and run as a daemon. We start the Snortsam
agent on the firewall with the command in Figure 12.10.

Figure 12.10 Snortsam Startup

[firewall]# /usr/sbin/snortsam /etc/snortsam.conf

SnortSam, v 2.23.

Copyright (c) 2001-2003 Frank Knobbe <frank@knobbe.us>. All rights reserved.

Plugin 'fwsam': v 2.2, by Frank Knobbe

Plugin 'fwexec': v 2.2, by Frank Knobbe

Plugin 'pix': v 2.5, by Frank Knobbe

Plugin 'ciscoacl': v 2.4, by Ali Basel <alib@sabanciuniv.edu>

Plugin 'netscreen': v 2.2, by Frank Knobbe

Plugin 'ipchains': v 2.4, by Hector A. Paterno <apaterno@dsnsecurity.com>

Plugin 'iptables': v 2.1, by Fabrizio Tivano <fabrizio@sad.it>

Plugin 'watchguard': v 2.1, by Thomas Maier <thomas.maier@arcos.de>

Plugin 'email': v 2.3, by Frank Knobbe

Parsing config file /etc/snortsam.conf...

Linking plugin 'iptables'...

Checking for existing state file: Not present.

Starting to listen for Snort alerts.

WWWBoard passwd.txt Access Attack
At this point, the Snortsam blocking agent is ready to accept commands from the
Snort output plug-in running on the Snort IDS. We are now ready to execute
the wget command as before from evilhost and watch its output in Figure 12.11.

www.syngress.com

626 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 626

Figure 12.11 WWWBoard passwd.txt Access Attack (Revisited)

[evilhost]$ wget –O passwd.txt –t 1 http://68.48.x.x/wwwboard/passwd.txt

--10:36:19-- http://68.48.x.x/wwwboard/passwd.txt

=> `passwd.txt'

Connecting to 68.48.x.x:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 23 [text/plain]

100%[==>] 23 22.46K/s

ETA 00:00

10:361:19 (22.46 KB/s) - `passwd.txt' saved [23/23]

This looks the same from the perspective of the client. Let us confirm this

by taking a look at the contents of the passwd.txt file:

$ cat passwd.txt

WebAdmin:aepTOqxOi4i8U

Indeed, the file is exactly the same, but let’s try now to access the index.html
file in the Web root on the Web server and see what happens.

$ wget -O passwd.txt -t 1 http://68.48.x.x/index.html

--10:36:19-- http://68.48.x.x/index.html

=> `passwd.txt'

Connecting to 68.48.x.x:80... failed: Connection timed out.

Giving up.

Now, this is a bit different.The client is completely unable to connect to the
Web server; in other words, the three-way TCP handshake is not allowed to
finish. Snortsam has successfully modified the IPtables policy on the firewall to
block the evilhost IP address in both the INPUT and FORWARD chains.This
means that IPtables will drop packets from evilhost that are destined for either
the firewall host itself or for any host connected to the firewall, and we can con-
firm this by executing the following two commands on the firewall:

iptables -nL INPUT

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP all -- evilhost 0.0.0.0/0

...

www.syngress.com

Active Response • Chapter 12 627

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 627

iptables -nL FORWARD

Chain FORWARD (policy ACCEPT)

target prot opt source destination

DROP all -- evilhost 0.0.0.0/0

...

Note that the DROP rules are added as the very first rules in the policy.This
will make IPtables silently drop packets before they are matched against any
other rules, including potential connection tracking rules that would otherwise
allow packets through if they were part of an established session.The material
presented so far is specific to IPtables on Linux, but Snortsam reacts similarly on
all supported firewalls, although the method of communication with each fire-
wall is different.Table 12.1 lists communication methods the Snortsam blocking
agent uses to communicate with each supported firewall.

Table 12.1 Snortsam Firewall Communication

Firewall Communication Method

IPtables IPtables binary
IPchains Raw socket
Ipf Ipf binary
Pf Ioctl call
Watchguard Watchguard binary
Netscreen Management port (TCP/23)
Cisco PIX Management port (TCP/23)
Check Point Check Point SDK

We can clearly see that the IP associated with evilhost is blocked in the
IPtables policy, but note that the first attack request in Figure 12.11 was allowed
to complete without hindrance.The passwd.txt is successfully downloaded from
the Web server. When exactly did Snortsam add these rules to the IPtables policy
relative to the first attack? Were these rules only added after the attack TCP ses-
sion was allowed to complete, or were they added sometime while the session
was still active? A packet trace taken during the first attack answers this question
(see Figure 12.12).

www.syngress.com

628 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 628

Figure 12.12 WWWBoard passwd.txt Access Attack Packet Trace

[firewall]# tcpdump –i eth0 port 80 and host 204.174.x.x –X –l –n –s 1500

204.174.x.x.38862 > 68.48.x.x.80: S 2273499460:2273499460(0) win 5840

68.48.x.x.80 > 204.174.x.x.38862: S 741892038:741892038(0) ack 2273499461

win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 1 win 5840

204.174.x.x.38862 > 68.48.x.x.80: P 1:119(118) ack 1 win 5840

0x0000 4500 00aa 8e78 4000 3206 795f ccae df18 E....x@.2.y_....

0x0010 0000 0000 97ce 0050 8782 d945 2c38 5fc7 P...E,8_.

0x0020 8018 16d0 7cb8 0000 0101 080a 14e2 573c |.........W<

0x0030 006e a7ea 4745 5420 2f77 7777 626f 6172 .n..GET./wwwboar

0x0040 642f 7061 7373 7764 2e74 7874 2048 5454 d/passwd.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e78 782e 7878 ost:.68.48.xx.xx

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

68.48.x.x.80 > 204.174.x.x.38862: . ack 119 win 5792

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

0x0000 4500 0199 f834 4000 3f06 01b4 0000 0000 E....4@.?.......

0x0010 ccae 0000 0000 97ce 2c38 5fc7 8782 d9bb P..,8_.....

0x0020 8018 16a0 ebca 0000 0101 080a 006e a7f4 n..

0x0030 14e2 573c 4854 5450 2f31 2e31 2032 3030 ..W<HTTP/1.1.200

0x0040 204f 4b0d 0a44 6174 653a 2054 7565 2c20 .OK..Date:.Tue,.

0x0050 3330 204d 6172 2032 3030 3420 3230 3a33 30.Mar.2004.20:3

0x0060 333a 3236 2047 4d54 0d0a 5365 7276 6572 3:26.GMT..Server

0x0070 3a20 4170 6163 6865 2f32 2e30 2e34 3820 :.Apache/2.0.48.

0x0080 2855 6e69 7829 206d 6f64 5f73 736c 2f32 (Unix).mod_ssl/2

0x0090 2e30 2e34 3820 4f70 656e 5353 4c2f 302e .0.48.OpenSSL/0.

0x00a0 392e 3763 0d0a 4c61 7374 2d4d 6f64 6966 9.7c..Last-Modif

0x00b0 6965 643a 2054 7565 2c20 3330 204d 6172 ied:.Tue,.30.Mar

0x00c0 2032 3030 3420 3136 3a32 383a 3231 2047 .2004.16:28:21.G

0x00d0 4d54 0d0a 4554 6167 3a20 2234 6234 3031 MT..ETag:."4b401

0x00e0 2d31 372d 6237 6463 3933 3430 220d 0a41 -17-b7dc9340"..A

0x00f0 6363 6570 742d 5261 6e67 6573 3a20 6279 ccept-Ranges:.by

www.syngress.com

Active Response • Chapter 12 629

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 629

Figure 12.12 WWWBoard passwd.txt Access Attack Packet Trace

0x0100 7465 730d 0a43 6f6e 7465 6e74 2d4c 656e tes..Content-Len

0x0110 6774 683a 2032 330d 0a4b 6565 702d 416c gth:.23..Keep-Al

0x0120 6976 653a 2074 696d 656f 7574 3d31 352c ive:.timeout=15,

0x0130 206d 6178 3d31 3030 0d0a 436f 6e6e 6563 .max=100..Connec

0x0140 7469 6f6e 3a20 4b65 6570 2d41 6c69 7665 tion:.Keep-Alive

0x0150 0d0a 436f 6e74 656e 742d 5479 7065 3a20 ..Content-Type:.

0x0160 7465 7874 2f70 6c61 696e 3b20 6368 6172 text/plain;.char

0x0170 7365 743d 4953 4f2d 3838 3539 2d31 0d0a set=ISO-8859-1..

0x0180 0d0a 5765 6241 646d 696e 3a61 6570 544f ..WebAdmin:aepTO

0x0190 7178 4f69 3469 3855 0a qxOi4i8U.

Iptables blocking rule is added here since the next packet

acknowledging sequence number 358 never makes it from the client to the

server so the server must re-transmit all data from sequence number 1

through 358. All communication from the client to the server (but not

vice-versa) has been cut at this point.

====> 204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

====> 204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

====> 68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

0x0000 4500 0199 f834 4000 3f06 01b4 0000 0000 E....4@.?.......

0x0010 ccae 0000 0000 97ce 2c38 5fc7 8782 d9bb P..,8_.....

0x0020 8018 16a0 ebca 0000 0101 080a 006e a7f4 n..

0x0030 14e2 573c 4854 5450 2f31 2e31 2032 3030 ..W<HTTP/1.1.200

0x0040 204f 4b0d 0a44 6174 653a 2054 7565 2c20 .OK..Date:.Tue,.

0x0050 3330 204d 6172 2032 3030 3420 3230 3a33 30.Mar.2004.20:3

0x0060 333a 3236 2047 4d54 0d0a 5365 7276 6572 3:26.GMT..Server

0x0070 3a20 4170 6163 6865 2f32 2e30 2e34 3820 :.Apache/2.0.48.

0x0080 2855 6e69 7829 206d 6f64 5f73 736c 2f32 (Unix).mod_ssl/2

0x0090 2e30 2e34 3820 4f70 656e 5353 4c2f 302e .0.48.OpenSSL/0.

0x00a0 392e 3763 0d0a 4c61 7374 2d4d 6f64 6966 9.7c..Last-Modif

0x00b0 6965 643a 2054 7565 2c20 3330 204d 6172 ied:.Tue,.30.Mar

0x00c0 2032 3030 3420 3136 3a32 383a 3231 2047 .2004.16:28:21.G

0x00d0 4d54 0d0a 4554 6167 3a20 2234 6234 3031 MT..ETag:."4b401

0x00e0 2d31 372d 6237 6463 3933 3430 220d 0a41 -17-b7dc9340"..A

0x00f0 6363 6570 742d 5261 6e67 6573 3a20 6279 ccept-Ranges:.by

www.syngress.com

630 Chapter 12 • Active Response

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 630

Figure 12.12 WWWBoard passwd.txt Access Attack Packet Trace

0x0100 7465 730d 0a43 6f6e 7465 6e74 2d4c 656e tes..Content-Len

0x0110 6774 683a 2032 330d 0a4b 6565 702d 416c gth:.23..Keep-Al

0x0120 6976 653a 2074 696d 656f 7574 3d31 352c ive:.timeout=15,

0x0130 206d 6178 3d31 3030 0d0a 436f 6e6e 6563 .max=100..Connec

0x0140 7469 6f6e 3a20 4b65 6570 2d41 6c69 7665 tion:.Keep-Alive

0x0150 0d0a 436f 6e74 656e 742d 5479 7065 3a20 ..Content-Type:.

0x0160 7465 7874 2f70 6c61 696e 3b20 6368 6172 text/plain;.char

0x0170 7365 743d 4953 4f2d 3838 3539 2d31 0d0a set=ISO-8859-1..

0x0180 0d0a 5765 6241 646d 696e 3a61 6570 544f ..WebAdmin:aepTO

0x0190 7178 4f69 3469 3855 0a qxOi4i8U.

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

68.48.x.x.80 > 204.174.x.x.38862: P 1:358(357) ack 119 win 5792

204.174.x.x.38862 > 68.48.x.x.80: . ack 358 win 6432

204.174.x.x.38862 > 68.48.x.x.80: F 119:119(0) ack 358 win 6432

This trace is quite different from the trace in Figure 12.4, which was taken
while Snortsam was not active. First, we see the normal three-way handshake
that initiates the session as usual.Then, we see the client request for the /www-
board/passwd.txt Uniform Resource Identifier (URI) and the corresponding
Web server “WebAdmin:aepTOqxOi4i8U” response.This server response packet
makes it out to the client due to the fact that the first packet with the “====>”
shows that the client attempts to acknowledge sequence number 358 from the
server. Hence, the client received all data ending at server sequence number 358,
and the second packet with the “====>” shows that the client is ready for any
data starting at sequence 358. However, this acknowledgment packet never makes

www.syngress.com

Active Response • Chapter 12 631

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 631

it to the server because the firewall is already blocking all traffic from evilhost.
We can see this in the trace by noting that the third packet with the “====>”is a
retransmission of the same “WebAdmin:aepTOqxOi4i8U” data to the client (the
data from sequence 1 to 358 is being sent again; see the 1:358(357)).This retrans-
mission does make it back to the client since the specific rule added by Snortsam
to the FORWARD chain only blocks packets that come from evilhost; not those
destined for evilhost.Therefore, this retransmission elicits yet another acknowl-
edgment of sequence number 358 from the client, which also does not reach the
server, and the process continues as mandated by the requirement that TCP
retransmit any data for which acknowledgments are not received.

At this point, we have seen Snortsam block all packets originating from evil-
host after Snort detected an attack signature matching SID 807, but we have not
seen any output of Snortsam itself. When the blocking agent on the firewall
receives a block request from the Snort IDS, a log message is generated that
includes the IP address to be blocked and the length of time the block is to
remain in effect. In our example configuration, we specified a logfile path of
/var/log/snortsam.log, and after our attack example we find the messages listed
in Figure 12.13 within this file.

Figure 12.13 Blocking Agent Messages

2004/03/02, 01:45:32, -, 1, snortsam, Starting to listen for Snort alerts.

2004/03/02, 01:45:50, 192.168.10.3, 2, snortsam, Blocking host 204.174.x.x

completely for 3600 seconds.

The general flow of events that Snortsam executes in the process of adding a
blocking rule to a firewall is as follows:

1. The modified version of Snort that contains the Snortsam output plug-
in detects an attack that matches a Snort rule that contains the fwsam
directive.

2. The Snort output plug-in contacts the Snortsam blocking agent running
on the firewall over TCP port 898.The contents of the message instruct
the agent to add a blocking rule to the firewall for the IP address that
generated the Snort alert.

3. The blocking agent checks its in-memory internal state (the
snortsam.state file is read at startup) to see if the source IP address has
already been blocked, and if so, whether its previous timeout has
expired.

www.syngress.com

632 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 632

4. If the blocking timeout has expired or if the IP has not yet been
blocked, the agent adds the IP and timeout to the state file and then
interfaces with the underlying firewall to add the blocking rule. Log
messages are written to the logfile during these two operations.

NFS mountd Overflow Attack
For Snortsam to respond to the exploit for the NFS mountd overflow vulnera-
bility, we must add the fwsam option to Snort SID 316 in the Snort rules file
exploit.rules just as we did for the passwd.txt access Snort rule in Figure 12.7.
The resulting Snort rule appears in Figure 12.14.

Figure 12.14 Modified NFS mountd Overflow Snort Rule (SID 316)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd

overflow"; content:"|eb56 5E56 5656 31d2 8856 0b88 561e|";

reference:cve,CVE-1999-0002; reference:bugtraq,121; classtype:attempted-

admin; sid:316; rev:3; fwsam: src, 1 hour;)

First, we reinstate network access to the evilhost IP address by clearing the
block rule from the previous passwd.txt access attack on the IPtables firewall. We
must also delete the file /var/log/snortsam.state on the firewall and restart
Snortsam so that Snortsam can react to the next attack. We start Snort with our
modified SID 316 rule and start the Snortsam blocking agent on the firewall
with the configuration file we built previously. We are now ready to execute the
mountd overflow attack against the NFS server from evilhost, and again we
watch the attack with a packet trace taken on the external interface of the fire-
wall in Figure 12.15.

Figure 12.15 NFS mountd Overflow Attack (Revisited)

[evilhost]$./mx 68.48.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 68.48.x.x

[firewall]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

15:53:59.266187 204.174.x.x.33854 > 68.48.x.x.sunrpc: udp 56 (DF)

15:53:59.267033 68.48.x.x.sunrpc > 204.174.x.x.33854: udp 28 (DF)

www.syngress.com

Active Response • Chapter 12 633

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 633

Figure 12.15 NFS mountd Overflow Attack (Revisited)

15:53:59.267662 204.174.x.x.33854 > 68.48.x.x.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b >...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53 (@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8 orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 eb56 5e56 5656 31d2 8856 0b88V^VVV1..V..

0x0380 561e 8856 2788 5638 b20a 8856 1d88 5626 V..V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b006 1.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

15:53:59.268454 68.48.x.x.32772 > 204.174.x.x.33854: udp 28 (DF)

www.syngress.com

634 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 634

So far, so good.The packet trace is identical to the first trace we took of this
exploit in Figure 12.6, so we see that the attack packet itself was allowed through
the firewall. However, now if we try to view the index.html page on the Web
server from evilhost after the attack has been completed, we again discover that
our connection attempt is blocked. We can confirm that Snortsam has again
added the same block rules to the INPUT and FORWARD chains on the fire-
wall (see Figure 12.16).

Figure 12.16 IPtables Block Rules

iptables -nL INPUT

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP all -- evilhost 0.0.0.0/0

...

iptables -nL FORWARD

Chain FORWARD (policy ACCEPT)

target prot opt source destination

DROP all -- evilhost 0.0.0.0/0

...

It should be noted that for our network configuration in Figure 12.1,
Snortsam will never stop the initial exploit packets from entering the network
and being forwarded to the internal servers because Snort does not have the
opportunity to detect the attack until the exploit packets are already on the same
subnet. Unfortunately, this means that for attacks that require a small number of
packets, the attacker may be able to successfully complete the attack and then
move to another source IP address to take advantage of the newly compromised
system. However, consider the relative speed of a fast 100MB internal network,
with the normal low latency of one to three hops, versus Internet links that are
1/100 to 1/2 that speed, and much higher latency stemming from the average
hop count of 15 hops between arbitrary hosts on the Internet. Provided the IDS
triggers quickly, most attackers should be unable to get many packets to the
target host before being blocked. In our passwd.txt access example, the attacker’s
TCP session was not even allowed to finish before the IPtables policy was modi-
fied.This, combined with Snortsam’s ease of deployment, its capability to avoid
causing a resource conflict between your IDS and your firewall, its granular rule
specification, and its capability to interact with many different firewalls, make it
an attractive candidate for implementing active response.

www.syngress.com

Active Response • Chapter 12 635

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 635

OINK!
If you want to prevent even the initial exploit from reaching the target
(as you may want to do for things like single-packet exploits, worms, or
DoS attacks that don’t depend on many packets), then read the next
two sections for methods that should be just what you are looking for.

Fwsnort
Fwsnort is an open-source project that aims to take the wonderful signature ruleset
developed by the Snort community and translate as many rules as possible into an
equivalent IPtables ruleset that can log and even block packets. Fwsnort is loosely
based on the shell script snort2iptables (see www.stearns.org/snort2iptables/)
written by William Stearns. Since 90 percent of all Snort rules depend on
searching for telltale patterns in packet application-layer data, an important prereq-
uisite to accomplishing any useful translation is the ability of IPtables to at least
perform string matches in kernel space.The IPtables string match module provides
this capability. One of the most significant features of Fwsnort is the addition of an
option –hex-string to the userland portion of IPtables itself.This option was
accepted as a patch to the IPtables code by the IPtables maintainers as of IPtables
version 1.2.8. Combined with the IPtables string match module, this option allows
content fields in Snort rules that contain hex codes to be easily included within
IPtables rulesets without modification. Fwsnort also parses existing IPtables rulesets
in order to determine which Snort rules can (optionally) be excluded from the
translation. If an IPtables policy has been configured to block all traffic over say, the
ICMP protocol, then it may not be useful to translate ICMP rules from Snort. In
addition, Fwsnort offers the capability of translating individual Snort rules by their
individual SID value, which means that if there are only specific rules that you
want included, you can identify them and have them added explicitly. Having said
all of this, there are several Snort rule options such as dsize, byte_test, and distance
whose use in a rule prevents it from being translated into an equivalent IPtables
rule.After taking these options into account, Fwsnort is able to translate nearly 70
percent of all rules included in Snort-2.1. Lest there be any doubt in your mind,
Fwsnort really is a simple NIPS. It may not have all the capabilities of either a
commercial product or the open-source Snort_inline program, but it definitely
does land squarely in the category of NIPS.

www.syngress.com

636 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 636

OINK!
As mentioned in previous chapters, options like dsize, byte_test, and dis-
tance are used extensively in the newer rules and are very valuable in
making rules more accurate and flexible. Before you import every rule
that can be imported, take the time to look at how likely they are to
generate false positives. Then remember what we said before about the
high potential for Very Bad™ side effects if you aren’t excruciatingly
careful about tuning the rules you implement for active response.

Installation
The installation of Fwsnort is accomplished in two main steps. First, you must
install the IPtables string match module.This normally requires a kernel recom-
pile, since this module is not included in the stock Linux kernel sources.The
string match module is implemented as a patch to the kernel and is classified in
the extra modules category according to the Netfilter project.The easiest way to
install this module is to use the patch-o-matic system distributed at
www.netfilter.org/downloads.html#pom-20031219.After untarring the patch-o-
matic tarball, execute the following command from the patch-o-matic directory:

KERNEL_DIR=/usr/src/linux-2.4.24 ./runme extra

Note that this command assumes that /usr/src/linux-2.4.24 directory is
where the kernel sources are located. Eventually, the following screen will be
presented that will allow the string module patch to be applied:

Kernel: /usr/src/linux

Userspace: /usr/local/src

Each patch is a new feature: many have minimal impact, some do not.

Almost every one has bugs, so I don't recommend applying them all!

Already applied: submitted/01_2.4.19

submitted/02_2.4.20

submitted/03_2.4.21

submitted/04_2.4.22

submitted/05_2.4.23

www.syngress.com

Active Response • Chapter 12 637

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 637

submitted/90_fw_compat_local-nullbinding

pending/59_ip_nat_h-unused-var

Testing... string.patch NOT APPLIED (2 missing files)

The extra/string patch:

Author: Emmanuel Roger <winfield@freegates.be>

Status: Working, not with kernel 2.4.9

This patch adds CONFIG_IP_NF_MATCH_STRING which allows you to

match a string in a whole packet.

THIS PATCH DOES NOT WORK WITH KERNEL 2.4.9 !!!

Do you want to apply this patch [N/y/t/f/a/r/b/w/q/?]

Although a detailed explanation of the kernel compilation process is beyond
the scope of this book, the essential piece of the puzzle is to make sure that
CONFIG_IP_NF_MATCH_STRING=y is in the kernel .config file before
compilation.This is most easily accomplished by using either make xconfig or
make menuconfig and selecting the String match support option under the Netfilter
Configuration section. Like many kernel options, string match support can either
be compiled directly into the kernel or compiled as a module. However, on a
production firewall, security is enhanced by removing support for loadable kernel
modules, so for our particular configuration we will compile the string match
extension into the kernel.

Next, we install Fwsnort itself.The latest Fwsnort tarball (0.6.3 as of this
writing) can be downloaded from www.cipherdyne.org/fwsnort/download/ or
found on the accompanying CD-ROM.After extracting the tarball, the install.pl
script should be executed from the fwsnort-0.6.3 directory.The install.pl script will
place Fwsnort in the filesystem at /usr/sbin/fwsnort, present the user with the
option to download the latest Snort rules located at www.snort.org/dl/rules/
snortrules-stable.tar.gz, and create the directory /etc/fwsnort where the Fwsnort
configuration file and rules files will be placed.After completing these steps,
Fwsnort is ready to be executed.

www.syngress.com

638 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 638

OINK!
As we said before, you should not be compiling things on your firewall.
Compile elsewhere and move binaries over to the firewall. In addition,
the advice mentioned in the patch-o-matic text previously is worth
remembering—almost all of the patches offered have bugs! Think seri-
ously about whether you trust this code and need this functionality
enough to justify the risk of adding it to your firewall’s kernel.

Configuration
By default, Fwsnort references the configuration file /etc/fwsnort/fwsnort.conf
for all configuration directives.Although the installation script handles nearly all
aspects of getting Fwsnort to a functional state as far as the filesystem is con-
cerned, there are three variables within the Fwsnort configuration file that need
to be manually edited before Fwsnort can function properly.These variables con-
trol which interfaces are external, internal, or part of a screened subnet (fre-
quently, and incorrectly, called a de-militarized zone (DMZ)) on the firewall and
are clearly denoted at the top of the fwsnort.conf file and initially have the value
CHANGEME. For our discussion we will assume that eth0 is the external
network interface of the IPtables firewall, and eth1 is the internal interface.There
is no DMZ interface. See Figure 12.17 for a sample Fwsnort configuration file.
Note that the HOME_NET and EXTERNAL_NET variables are similar to the
same variables found in the configuration file for Snort itself, but instead of spec-
ifying networks, these variables specify interfaces. Fwsnort also supports whitelists
in the same manner as Snortsam through the use of the IGNOREIP and
IGNORENET variables shown commented out at the end of the example
config file in Figure 12.17.

Figure 12.17 Fwsnort Configuration File /etc/fwsnort/fwsnort.conf

Interface variables

EXTERNAL_INTF eth0;

INTERNAL_INTF eth1;

#DMZ_INTF _CHANGEME_;

HOME_NET INTERNAL_INTF;

www.syngress.com

Active Response • Chapter 12 639

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 639

Figure 12.17 Fwsnort Configuration File /etc/fwsnort/fwsnort.conf

EXTERNAL_NET EXTERNAL_INTF;

By default the SERVER variables are linked to the

internal interface on the firewall, but can contain a

comma separated list of IP addresses or networks.

IMPORTANT: If you are running IPtables on an ordinary

host without multiple network interfaces, then you

will need to point the following variables to

"EXTERNAL_INTF". For example:

HTTP_SERVERS EXTERNAL_INTF;

HTTP_SERVERS INTERNAL_INTF;

SMTP_SERVERS INTERNAL_INTF;

DNS_SERVERS INTERNAL_INTF;

SQL_SERVERS INTERNAL_INTF;

TELNET_SERVERS INTERNAL_INTF;

Use the following variables to define hosts and/or networks that

should never illicit a response from fwsnort. These variable can be

specified multiple times to whitelist as many hosts/networks as

needed. For example to whitelist the ip 192.168.10.1 and the

network 10.10.10.0/24, you would specify IGNOREIP and IGNORENET

variables like so:

#IGNOREIP 192.168.10.1;

#IGNORENET 10.10.10.0/24;

Execution
Fwsnort supports several command-line arguments to alter its behavior as it is
executed from the command line.A complete listing of all supported options is
available n the Fwsnort man page.The general strategy employed by Fwsnort is
to first parse the IPtables ruleset that is currently running on the local system,
then translate any Snort rules that the policy may actually permit through, and
lastly to create a Bourne shell script /etc/fwsnort/fwsnort.sh that implements the
new resulting IPtables ruleset.This script creates a custom IPtables FORWARD

www.syngress.com

640 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 640

chain and a custom INPUT chain for each interface, and adds a jump rule to the
built-in FORWARD and INPUT chains that jumps packets into the custom
chains for examination by Fwsnort. By default, Fwsnort only logs the Snort SID
value corresponding to specific attacks; it does not implement active response
without the use of either the –ipt-reject or –ipt-drop command-line options.

Figure 12.18 Sample Fwsnort Execution

[firewall]# fwsnort –-ipt-reject

=-=

Snort Rules File Success Fail Ipt_apply Total

.. snmp.rules 17 0 0 17

.. finger.rules 13 0 0 13

.. info.rules 6 1 0 7

.. ddos.rules 18 15 0 33

.. virus.rules 1 18 0 19

.. icmp.rules 7 15 7 22

.. dns.rules 13 6 2 19

.. rpc.rules 0 128 0 128

.. backdoor.rules 52 6 0 58

.. scan.rules 15 10 1 25

.. x11.rules 2 0 0 2

.. oracle.rules 19 6 0 25

.. web-frontpage.rules 33 1 33 34

.. misc.rules 23 21 1 44

.. shellcode.rules 0 19 0 19

.. web-misc.rules 257 35 246 292

.. policy.rules 10 12 0 22

.. p2p.rules 14 2 0 16

.. ftp.rules 13 39 0 52

.. experimental.rules 0 0 0 0

.. porn.rules 20 1 0 21

.. deleted.rules 185 32 11 217

.. sql.rules 40 3 0 43

.. pop2.rules 3 1 0 4

.. imap.rules 0 16 0 16

www.syngress.com

Active Response • Chapter 12 641

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 641

Figure 12.18 Sample Fwsnort Execution

.. smtp.rules 18 7 0 25

.. web-coldfusion.rules 35 0 35 35

.. local.rules 0 0 0 0

.. bad-traffic.rules 3 11 2 14

.. dos.rules 8 10 1 18

.. web-client.rules 5 1 2 6

.. web-cgi.rules 284 60 282 344

.. other-ids.rules 3 0 0 3

.. pop3.rules 5 14 0 19

.. exploit.rules 27 9 4 36

.. multimedia.rules 2 4 1 6

.. rservices.rules 11 2 0 13

.. web-iis.rules 100 11 100 111

.. mysql.rules 2 0 0 2

.. icmp-info.rules 16 77 16 93

.. web-php.rules 39 23 39 62

.. telnet.rules 12 2 0 14

.. chat.rules 7 11 0 18

.. netbios.rules 10 17 0 27

.. nntp.rules 0 2 0 2

.. attack-responses.rules 13 3 0 16

.. tftp.rules 4 5 0 9

.. web-attacks.rules 47 0 47 47

==

1412 656 830 2068

.. Generated iptables rules for 1412 out of 2068 signatures: 68.28%

.. Found 830 applicable snort rules to your current iptables

policy.

.. Logfile: /var/log/fwsnort.log

.. Iptables script: /etc/fwsnort/fwsnort.sh

=-=

www.syngress.com

642 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 642

In Figure 12.18, for each Snort rules file we see the number of rules Fwsnort
was able to translate into equivalent IPtables rules, the number that could not be
translated, the number of applicable rules to the IPtables policy that is currently
running on the host (this feature may be disabled with the –no-ipt-sync option),
and the total number of rules in the Snort rules file.At the end of the output,
statistics are displayed about the total number of rules that were successfully
translated and the total number of rules that are applicable to the IPtables policy.
Note that for our policy there are no applicable NetBIOS or Telnet rules even
though 10 and 12 NetBIOS and Telnet Snort rules were successfully translated,
respectively. Fwsnort supports the translation of an individual Snort rules file or
even of a single Snort rule through the use of the –type or –snort-sid <sid> com-
mand-line options.

OINK!
The IPtables string match module uses the Boyer Moore string search
algorithm, which is extremely fast. However, converting the entire Snort
ruleset into an equivalent IPtables policy would result in (conservatively)
around 4000 rules (2000 for each Fwsnort chain), which is excessive for
any firewall policy. Your results may vary, but Fwsnort works best when a
few choice Snort rules are converted that are tuned for your particular
network configuration. In addition, remember that potential bugs in
kernel-level code can have much more damaging results to a system
than bugs in a userland application. By the way, generating some hard
benchmarking numbers for Fwsnort would be a great contribution to
the open-source community since such numbers don’t exist yet!

WWWBoard passwd.txt
Access Attack (Revisited)
Now that we have our brand new Fwsnort software installed on the firewall, it is
time to see how it handles a real attack. Specifically, we will employ the network
diagram in Figure 12.19 and execute the same WEB-CGI /wwwboard/passwd.txt
access attack we used against the Snortsam network.

www.syngress.com

Active Response • Chapter 12 643

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 643

Evilhost is once again our villain, and the Web server our not-so-hapless
victim.This time, there is no separate Snort system and no dedicated management
network hanging off the firewall.All IDS detection functions and IPS drop/reject
functions are implemented by Fwsnort directly in the IPtables policy running on
the firewall. Effectively, the completeness of IPtables allows us to put a significant
portion of the functionality provided by Snort directly into the Linux kernel.We
first run Fwsnort from the command line and have it generate an IPtables ruleset
designed to both log and reset any Web session that matches the string “/www-
board/passwd.txt” from Snort SID 807.The output of this command along with
the Bourne shell script it produces is listed in Figure 12.20.

Figure 12.20 Fwsnort Command for SID 807

[firewall]# fwsnort --snort-sid 807 --ipt-reject

=-=

.. Generated iptables rules for 1 out of 2068 signatures: 0.05%

.. Found 1 applicable snort rules to your current iptables

policy.

.. Logfile: /var/log/fwsnort.log

.. Iptables script: /etc/fwsnort/fwsnort.sh

=-=

[firewall]# cat /etc/fwsnort/fwsnort.sh

#!/bin/sh

www.syngress.com

644 Chapter 12 • Active Response

Figure 12.19 Fwsnort Network

evilhost
(207.174.x.x)

Intnernet

firewall (68.48.x.x)

Web server
(192.168.10.20)

NFS server
(192.168.10.30)

switch
192.168.10.1

Fwsnort

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 644

Figure 12.20 Fwsnort Command for SID 807

#==================== config ====================

ECHO=/bin/echo

IPTABLES=/sbin/iptables

#================== end config ==================

###

############ Create fwsnort iptables chains. ############

###

$IPTABLES -N fwsnort_INPUT_eth1 2> /dev/null

$IPTABLES -F fwsnort_INPUT_eth1

$IPTABLES -N fwsnort_INPUT_eth0 2> /dev/null

$IPTABLES -F fwsnort_INPUT_eth0

$IPTABLES -N fwsnort_FORWARD 2> /dev/null

$IPTABLES -F fwsnort_FORWARD

###

############ web-cgi.rules ############

###

$ECHO " .. Adding web-cgi rules."

msg: "WEB-CGI /wwwboard/passwd.txt access", classtype: "attempted-

recon", reference: "arachnids,463"

$IPTABLES -A fwsnort_FORWARD -p tcp -d 192.168.10.0/24 —dport 80 —tcp-

flags ACK ACK -m string —string “/wwwboard/passwd.txt” -j LOG —log-prefix

“SID807 “

$IPTABLES -A fwsnort_FORWARD -p tcp -d 192.168.10.0/24 —dport 80 —tcp-flags

ACK ACK -m string —string “/wwwboard/passwd.txt” -j REJECT —reject-with

tcp-reset

###

############ Jump traffic to the fwsnort chains. ############

###

$IPTABLES -I INPUT 1 -i eth1 -j fwsnort_INPUT_eth1

$IPTABLES -I INPUT 1 -i eth0 -j fwsnort_INPUT_eth0

www.syngress.com

Active Response • Chapter 12 645

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 645

Figure 12.20 Fwsnort Command for SID 807

$IPTABLES -I FORWARD 1 -j fwsnort_FORWARD

EOF

The two most important IPtables commands in the fwsnort.sh script in Figure
12.20 are listed in bold.The first of these commands instructs IPtables to generate
a log message for any TCP packet with the ack flag set that is destined for an
address within the 192.168.10.0/24 subnet that also contains the string “/www-
board/passwd.txt”.The log message will contain all of the standard information
included within an IPtables log message (see http://logi.cc/linux/netfilter-log-
format.php3 for more information), but will also include the readily identifiable
string SID807.The next IPtables command will have IPtables generate a TCP reset
packet for any matching Web session. It would be just as easy to drop the packets
without sending a reset through the use of the –ipt-drop option to Fwsnort—this
example was generated with the –ipt-reject option. Generating a reset packet has the
advantage that TCP will not attempt retransmitting packets, as we saw in when
Snortsam added the block rule to the firewall. However, since the IPtables
ipt_REJECT code sends the reset packet to the client instead of the server, the
client could ignore the effort by Fwsnort to tear down the session by either run-
ning a modified TCP stack that ignores resets or intercept the reset before it can
reach the TCP stack.Without further ado, let’s run the fwsnort.sh shell script on the
firewall and see what actually happens on the network when we run the attack.

[firewall]# /etc/fwsnort/fwsnort.sh

.. Adding web-cgi rules.

[evilhost]$ wget –O passwd.txt –t 1 http://68.48.x.x/wwwboard/passwd.txt

--12:44:51-- http://68.48.x.x/wwwboard/passwd.txt

=> `passwd.txt.5'

Connecting to 68.48.x.x:80... connected.

HTTP request sent, awaiting response...

Read error (Connection reset by peer) in headers.

Giving up.

This time, the session is allowed to be established, but then as soon as the
HTTP request is sent it appears that the session is torn down by the server. We
can confirm this by examining a packet trace taken on the external interface of
the firewall as usual.

www.syngress.com

646 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 646

[firewall]# tcpdump -l -X -s 1500 -n -i eth0 port 80 and tcp and host

204.174.x.x

tcpdump: listening on eth0

204.174.x.x.40491 > 68.48.x.x.80: S 3376765297:3376765297(0) win 5840

68.48.x.x.80 > 204.174.x.x.40491: S 1814833248:1814833248(0) ack

204.174.x.x.40491 > 68.48.x.x.80: P 1:119(118) ack 1 win 5840

0x0000 4500 00aa a927 4000 3206 5eb0 ccae df18 E....'@.2.^.....

0x0010 0000 0000 9e2b 0050 c945 5972 6c2c 2861 +.P.EYrl,(a

0x0020 8018 16d0 7980 0000 0101 080a 14e3 f05e y..........^

0x0030 0070 4122 4745 5420 2f77 7777 626f 6172 .pA"GET./wwwboar

0x0040 642f 7061 7373 7764 2e74 7874 2048 5454 d/passwd.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e78 782e 7878 ost:.68.48.xx.xx

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

15:44:50.093323 68.48.x.x.80 > 204.174.x.x.40491: R 1814833249:1814833249(0)

win 0

204.174.x.x.40491 > 68.48.x.x.80: . ack 1 win 5840

We see from the trace that the three-way TCP handshake has no problems
being established just as one would expect.Then, as soon as the HTTP request is
sent, the server sends a reset packet (listed in bold) to the client, which tears
down the session. From the server’s perspective we see the following:

[webserver]# tcpdump –i eth0 –l –n –X –s 1500 port 80 and tcp and host

204.174.x.x

204.174.x.x.40491 > 192.168.10.20.80: S 3376765297:3376765297(0) win 5840

192.168.10.20.80 > 204.174.x.x.40491: S 1814833248:1814833248(0) ack

3376765297 win 5792

204.174.x.x.40491 > 192.168.10.20.80: . ack 1 win 5840

The most important thing to notice in this trace is that the HTTP request
never actually makes it through to the Web server. Had our server actually been
vulnerable to the exploit, the attack would have been blocked at the firewall and
been completely unsuccessful. No retransmissions are ever generated because the
server never sees any application request from the client, and the client never has
the opportunity to retransmit the original request because the TCP reset packet

www.syngress.com

Active Response • Chapter 12 647

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 647

generated by the firewall forces the entire session to be destroyed. Note that the
packet trace taken on the Web server shows its internal address on the network
instead of the external address on the firewall to which the client connects. So,
we have succeeded in thwarting this attack, but what about a completely dif-
ferent attack from the same IP address? Due to the fact that the IPtables policy
generated by Fwsnort is static, the client still has connectivity to the Web server.
Only those specific Snort rules that have been translated into equivalent IPtables
rules are blocked. However, Fwsnort by default uses the IPtables log-prefix option
to log the Snort rule SID to the system log whenever a matching packet
attempts to traverse the interfaces on the firewall. In the specific case of the
WEB-CGI /wwwboard/passwd.txt access shown previously, the following log
message appears in /var/log/messages:

Feb 22 19:42:57 firewall kernel: SID807 IN=eth0 OUT=eth1 SRC=204.174.x.x

DST=192.168.10.20 LEN=200 TOS=0x00 PREC=0x00 TTL=49 ID=7419 DF PROTO=TCP

SPT=40491 DPT=80 WINDOW=5840 RES=0x00 ACK PSH URGP=0

Once such a message is written to the system log, it can be analyzed by psad,
Michael Rash’s Port Scan Attack Detector, (see www.cipherdyne.org/psad),
which has the capability of sending alerts and automatically blocking IP addresses
based on the SIDxxx component of IPtables log messages such as the one just
displayed.A sample e-mail alert generated by psad from the previous IPtables log
message appears in Figure 12.21. whois information about the source IP address
has been removed for brevity.

Figure 12.21 Sample psad Alert Generated from SID 807 Attack

From: root <root@cipherdyne.org>

Subject: ** psad: [DL2] SCAN from: evilhost

To: mbr@cipherdyne.org

X-Original-To: mbr@cipherdyne.org

Delivered-To: mbr@cipherdyne.org

Date: Wed, 31 Mar 2004 00:38:35 -0500 (EST)

=-=-=-=-=-=-=-=-=-=-=-= Wed Mar 31 00:38:35 2004 =-=-=-=-=-=-=-=-=-=-=-=

** psad: Suspicious traffic detected against 192.168.10.20

Danger level: [2] (out of 5)

www.syngress.com

648 Chapter 12 • Active Response

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 648

Figure 12.21 Sample psad Alert Generated from SID 807 Attack

Scanned tcp ports: [80: 1 packets]

tcp flags: [ACK PSH: 1 pkts]

Source: 204.174.x.x

Destination:192.168.10.20

DNS: webserver

Syslog host: syslog_host

Current interval: Wed Mar 31 00:38:35 2004 (start)

Wed Mar 31 00:38:40 2004 (end)

Overall stats since: Fri Feb 20 17:59:13 2004

Complete tcp range: [80]

chain: interface: tcp: udp: icmp:

forward eth0 16 0 0

** tcp scan signatures: **

"WEB-CGI /wwwboard/passwd.txt access"

classtype: web-application-attack

sid: 807

content: "/wwwboard/passwd.txt"

chain: forward

packets: 1

** Whois Information: **

=-=-=-=-=-=-=-=-=-=-=-= Wed Mar 31 00:38:35 2004 =-=-=-=-=-=-=-=-=-=-=-=

www.syngress.com

Active Response • Chapter 12 649

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 649

Notes from the Underground…

Fwsnort Evasion
The IPtables string match module strictly attempts to match strings
against the content portion of individual packets. Hence, any IDS evasion
technique that breaks an attack string across multiple packets or alters an
attack string in any way will defeat the string match module. Such tech-
niques include packet fragmentation, URL encoding, polymorphic shell
code, whisker-style session splicing (see www.wiretrip.net/rfp/
txt/whiskerids.html), and so forth. Some of Snort’s preprocessors, dis-
cussed in Chapter 6, “Preprocessors,” combat these techniques by
attempting to either canonicalize data or alert on anomalies—Fwsnort is
obviously simpler and thus cannot perform these functions. There are
many worms and viruses that make no effort to hide their tracks, how-
ever, so Fwsnort can be useful as a basic active response system for such
network baddies as well as for those attackers who neglect to use these
more advanced techniques. You will see the following URL in other places
in this book, but just in case you haven’t seen it until now, the canonical
reference for evading detection by a NIDS is

“Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection” by Thomas H. Ptacek & Timothy N. Newsham
(www.insecure.org/stf/secnet_ids/secnet_ids.html).

NFS mountd Overflow Attack (Revisited)
We have seen how Fwsnort reacts to the Web server passwd.txt access attack by
generating a TCP reset packet that tears down the offending TCP session. Now,
let’s explore how Fwsnort reacts to an attack that is sent over the UDP protocol.
Naturally, we use the same mountd overflow exploit, which is detected by Snort
SID 316. First, we need to have Fwsnort generate a shell script that is designed
to react to the attack and apply it to the firewall (see Figure 12.22).

www.syngress.com

650 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 650

Figure 12.22 Fwsnort Command for SID 316

[firewall]# fwsnort --snort-sid 316 --ipt-reject

=-=

.. Generated iptables rules for 1 out of 2068 signatures: 0.05%

.. Found 1 applicable snort rules to your current iptables

policy.

.. Logfile: /var/log/fwsnort.log

.. Iptables script: /etc/fwsnort/fwsnort.sh

=-=

[firewall]# /etc/fwsnort/fwsnort.sh

.. Adding exploit rules.

The resulting Fwsnort shell script is identical to the script for SID 807 in
Figure 12.20, except for the two IPtables commands that are designed to log and
react to the attack. Due to the fact that the Snort rule for the mountd exploit
makes use of hex codes in the content field, the new IPtables commands make
use of the –hex-string option (see Figure 12.23).

Figure 12.23 Fwsnort SID 316 IPtables Commands

$IPTABLES -A fwsnort_FORWARD -p udp -d 192.168.10.0/24 -m string —hex-

string

"|eb56 5E56 5656 31d2 8856 0b88 561e|" -j LOG --log-prefix "SID316 "

$IPTABLES -A fwsnort_FORWARD -p udp -d 192.168.10.0/24 -m string --hex-

string

“|eb56 5E56 5656 31d2 8856 0b88 561e|” -j REJECT --reject-with icmp-port-

unreachable

Now we execute the attack again and watch a packet trace on the external
interface of the firewall in Figure 12.24. Note that the initial request immediately
elicits an ICMP port unreachable response from the firewall and no more packets
are transmitted.The server never has an opportunity to be hit by the overflow
attack packet.

www.syngress.com

Active Response • Chapter 12 651

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 651

Figure 12.24 NFS mountd Overflow Attack and Packet Trace

[evilhost]$./mx 68.48.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 68.48.x.x

[firewall]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

204.174.x.x.33854 > 68.48.x.x.sunrpc: udp 56 (DF)

68.48.x.x.sunrpc > 204.174.x.x.33854: udp 28 (DF)

204.174.x.x.33854 > 68.48.x.x.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b >...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53 (@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8 orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 eb56 5e56 5656 31d2 8856 0b88V^VVV1..V..

0x0380 561e 8856 2788 5638 b20a 8856 1d88 5626 V..V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b006 1.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

www.syngress.com

652 Chapter 12 • Active Response

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 652

Figure 12.24 NFS mountd Overflow Attack and Packet Trace

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

68.48.x.x > 204.174.x.x: icmp: 68.48.x.x udp port 53 unreachable [tos 0xc0]

This section explored how Fwsnort implements active response to two dif-
ferent attacks over the TCP and UDP protocols. Fwsnort is highly specific to
IPtables and its string matching kernel module, but as Linux adoption accelerates
there are continually more and more systems capable of deploying Fwsnort.The
strategy employed by Fwsnort does not lend itself to the wholesale blocking of
IP addresses, but rather takes a targeted approach to individual attacks as defined
by the Snort rules files.This is very similar to the approach taken by
Snort_inline, as we will see in the next section.

Snort_inline
The phrase intrusion prevention has enjoyed much publicity of late in the security
community. Many commercial vendors are scrambling to make it to the top of the
IPS market.The open-source community always seems to provide quality alterna-
tives to commercially available software, and the intrusion prevention arena is no
exception. Snort_inline is an open-source IPS that is based fundamentally on Snort
and can be freely downloaded from http://snort-inline.sourceforge.net/. It can also
be found on the CD-ROM accompanying this book. Jed Haile initially wrote
Snort_inline, which is now maintained by Rob McMillen.

The primary distinguishing factor that promotes an active response system to
a full IPS is the capability to modify packets in real time as they enter and/or
exit a network.This means that packets must travel through the IPS, so it must be
an inline device. Hence, the IPS must either be a hop in the route packets tra-
verse as they enter or exit the network, or must act as a bridge between two
Ethernet network segments (for our discussion we will assume Ethernet is our
data-link layer protocol). If the IPS acts as a bridge, then it will not be recogniz-
able as an additional hop since Time To Live (TTL) values are not decremented
as packets are processed across its interfaces.An inline device is in a position to
not only drop or reject individual packets based on the application layer, but also
alter application data within the device and before sending the packet on its way.
In many cases, this capability allows an IPS to nullify attacks in such a way that it

www.syngress.com

Active Response • Chapter 12 653

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 653

may be difficult to detect the application modification at the client side (for
example, buffer overflow attacks frequently involve trial and error before hitting
the offsets correctly), and before the attack is able to cause any damage.This is
even more interesting considering that most attacks that can result in an actual
compromise instead of a DoS of a target system exploit an application-level vul-
nerability. Snort_inline is meant to run on a Linux system that is running in
bridging mode, and as such is an inline device. Snort_inline make use of a packet
queuing library called libipq that is provided by IPtables to allow the kernel to
queue packets from kernel space to an application running in user space. In our
case, this application will be Snort_inline, which is a version of Snort that has
been modified to use libipq as its packet collection mechanism instead of the
standard libpcap (see www.tcpdump.org).After examining each packet in turn,
Snort_inline will make a decision about whether to drop, reject, or alter the
packet before sending on it way via libnet (see
www.packetfactory.net/Projects/Libnet/).

OINK!
Both libpcap and libnet are two extremely important libraries used by
many projects in the open-source community. Libpcap is a packet cap-
ture library that can be used to assist in the creation of everything from
a custom Ethernet sniffer to an IDS. Libnet is a low-level interface used
to create packets and put them on the wire. Libnet can be used to
create network testing or scanning tools, and is useful for answering
questions like, “I wonder how the IP stack on host X will handle a
strange packet like Y.”

So far, with Snortsam and Fwsnort we have seen two implementations of
active response, but neither of these pieces of software touched packet applica-
tion-layer data. Snortsam implemented active response at the network layer
through the wholesale blocking of IP addresses. Fwsnort implemented active
response at the transport layer through the use of TCP reset packets for indi-
vidual TCP sessions or issuing ICMP port-unreachable messages in response to
UDP packets. In this section, we will revisit the passwd.txt access and mountd
overflow attacks from the previous sections and show how Snort_inline responds
to such exploits at the application layer.

www.syngress.com

654 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 654

Installation
The installation of Snort_inline is somewhat involved. It requires a kernel recom-
pile and the installation of bridge-utils and libipq (which is classified as a devel-
opment library by the Netfilter project). In addition, Snort_inline requires a 1.0.x
version of libnet instead of a later version in the 1.1.x series, so you may need to
install the older libnet if your Linux distribution shipped with a recent version.

A stock Linux kernel in the 2.4 series (and higher) can be compiled to act as
an Ethernet bridge and act as a firewall with IPtables. However, Linux cannot
support both capabilities at the same time.Therefore, Linux cannot apply IPtables
restrictions to packets that are to traverse interfaces that have been configured to
be part of a bridge. Fortunately, the open-source community has not neglected
this nagging detail.A patch to the kernel sources is provided by the Ebtables pro-
ject (see http://ebtables.sourceforge.net/) and adds the capability to firewall
packets sent through an Ethernet bridge.Although a thorough treatment of the
kernel compilation process is beyond the scope of this book, the general steps in
Figure 12.25 are required to correctly configure and compile the kernel for our
needs. Note that for this discussion, we will assume the sources for kernel 2.4.24
are already installed in the directory /usr/src/linux-2.4.24.

Figure 12.25 Compilation Steps for Bridging Linux Kernel

1. Download the Ebtables kernel patch against Linux kernel 2.4.24 from
http://ebtables.sourceforge.net/download.html#latest. Copy the
resulting file ebtables-brnf-5_vs_2.4.24.diff to the kernel sources direc-
tory /usr/src/linux-2.4.24.

2. Run the following command to apply the patch to the kernel sources:

patch -p1 < ebtables-brnf-5_vs_2.4.24.diff

3. Configure the kernel with your favorite kernel configuration interface,
such as “make menuconfig.”The important kernel options to enable
under the Networking options tree are:

� 802.1d Ethernet Bridging

� Network packet filtering (replaces IPchains)

� Userspace queuing via NETLINK

www.syngress.com

Active Response • Chapter 12 655

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 655

Figure 12.25 Compilation Steps for Bridging Linux Kernel

� IP tables support (required for filtering/masq/NAT)

� Packet filtering

4. Compile and install the kernel in the usual way (see the kernel-HOWTO
for more information: www.tldp.org/HOWTO/Kernel-HOWTO/
index.html).

Now that we have a properly built kernel available to power the Snort_inline
Linux system, we need to install libipq, bridge-utils, and finally Snort_inline itself
(we assume that a 1.0.x version of libnet is already installed). For libipq, we
download the latest release of IPtables (1.2.9 as of this writing) from www.net-
filter.org or copy it from the accompanying CD-ROM. Unpack the tarball and
issue the following commands from the resulting IPtables-1.2.9 directory:

make KERNEL_DIR=/usr/src/linux-2.4.24

make install KERNEL_DIR=/usr/src/linux-2.4.24

make install-devel

Similarly, download bridge-utils from http://bridge.sourceforge.net/down-
load.html or copy it from the accompanying CD-ROM, unpack the tarball, and
issue the following commands from the bridge-utils sources directory:

./configure –prefix=/usr

make

make install

Lastly, we download the latest release of Snort_inline (2.1.0a as of this
writing) from http://snort-inline.sourceforge.net/ or copy it from the accompa-
nying CD-ROM, unpack the tarball, and run the following commands from the
snort_inline-2.1.0a directory:

./configure –-prefix=/usr --enable-inline

make

make install

The installation is now complete and we have a functional IPS at our disposal.

www.syngress.com

656 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 656

Configuration
The configuration of Snort_inline involves three main steps. We must configure
the Linux system to bridge two Ethernet segments, set up an IPtables policy that
sends packets into the QUEUE target, and edit the Snort configuration
(including the rules).This discussion will illustrate a basic configuration that gets
Snort_inline up and running. For a more complete implementation of a script to
automate this process, refer to Rob McMillen’s rc.firewall script (see www.hon-
eynet.org/papers/honeynet/tools/). We will assume that the Snort_inline Linux
system has two Ethernet interfaces, eth0 and eth1.The basic script in Figure
12.26 configures a bridge called br0, sets up forwarding, and starts IPtables packet
queuing in the FORWARD chain.An important thing to note about the config-
uration script is that forwarding is turned off.The reason for this is that
Snort_inline is responsible for constructing packets (via libnet) on the egress
interface instead of the native IP stack of the underlying system.This allows
Snort_inline to only forward those packets that do not trip a rule in the Snort
detection engine, or alter those packets that do.This also means that if the
Snort_inline process dies or is killed, all network connectivity will be severed for the
network segments bridged by the system on which Snort_inline is deployed.

Figure 12.26 Basic Bridge Configuration Script

#!/bin/sh

BRIDGE=/usr/sbin/brctl

IFCONFIG=/sbin/ifconfig

IPTABLES=/usr/sbin/iptables

ECHO=/bin/echo

remove any potential IP addresses on interfaces

$IFCONFIG eth0 0.0.0.0 up -arp

$IFCONFIG eth1 0.0.0.0 up -arp

build the bridge br0 out of the eth0 and eth1 interfaces

$BRIDGE addbr br0

$BRIDGE addif br0 eth0

$BRIDGE addif br0 eth1

www.syngress.com

Active Response • Chapter 12 657

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 657

Figure 12.26 Basic Bridge Configuration Script

activate the bridge (note the use of ifconfig just like

for any other normal networking interface)

$IFCONFIG br0 0.0.0.0 up -arp

clear any existing iptables ruleset and then send all packets

in the FORWARD chain to the QUEUE target so that Snort_inline

can examine them.

$IPTABLES -F

$IPTABLES -A FORWARD -j QUEUE

turn forwarding OFF!!!

$ECHO 0 > /proc/sys/net/ipv4/ip_forward

Most Snort rules have a default rule action of alert. Snort_inline adds three new
rule actions that can be specified in Snort rules: drop, reject, and sdrop.The action
drop instructs Snort_inline to drop the packet via IPtables and log it as Snort nor-
mally does.A rule action of reject is similar to the functionality provided by Fwsnort
where a TCP reset is generated for TCP sessions and an ICMP port-unreachable
message is generated for UDP packets.A rule action of sdrop is the same as the drop
action, but this time Snort will not log the packet. Finally, Snort_inline implements
the new rule option replace that will substitute matching content with specific con-
tent specified by the administrator.The remainder of our discussion will concen-
trate on using the replace option with the normal alert rule action, since the drop,
reject, and sdrop options are fairly self-explanatory.The following two modified
Snort rules taken from the file README.INLINE in the Snort_inline sources
illustrate this new option:

alert tcp any any <> any 80 (msg: "tcp replace"; content:"GET";

replace:"BET";)

alert udp any any <> any 53 (msg: "udp replace"; content: "yahoo"; replace:

"xxxxx";)

Note that the replace option can only replace packet contents with new data
of exactly the same length as the original data. Otherwise, Snort_inline would
break both the TCP and UDP protocols. In the case of TCP, if Snort_inline sub-
stituted a series of characters with a different length from the original content,
then the data sequence acknowledgment numbers would not match across the

www.syngress.com

658 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 658

session and would force retransmissions to take place (recall Figure 12.12). In the
case of UDP, there is a length field in the UDP header that specifies the length
in bytes of both the UDP header and the data it encapsulates. If a different
length series of bytes were substituted, then the length field would no longer be
correct. Snort_inline must not break protocols. Even with the requirement that the
replace option contain data of the same length as contained in the content option,
Snort_inline must still recalculate transport-layer checksums.This recalculation is
mandatory for TCP, and is optional for UDP unless the UDP checksum was
previously calculated by the client.

The only remaining task is to configure the snort.conf file. We leave this as
an exercise for the reader, since Chapters 2 and 3 cover this in detail.

Architecture
Now that we have Snort_inline installed on a system that is configured to act as
a bridge, how do we place this system in our original network in Figure 12.1?
The answer is that we use the bridge to connect the Ethernet segment between
the Web and NFS servers to the firewall itself.All packets that are destined for
either server must go through the bridge where they will be processed by
Snort_inline.The network architecture that makes this possible is shown in
Figure 12.27. Note that there are no IP addresses assigned to the Snort_inline
system.This emphasizes the fact that this system is acting as a bridge. In a real-life
scenario, there would most likely be a management network to which the
Snort_inline system would be connected via a third interface. For the sake of
pedagogical simplicity, we’ll leave this out.The fact that the Web and NFS servers
are connected via a switch makes no difference to the Snort_inline system, since
the only packets that make it through to this section of the network have already
been processed through the Snort detection engine.This is one of the key advan-
tages of using an inline solution—you can absolutely guarantee that it will see
every packet, since every packet destined for the protected machines must tra-
verse the inline device.

www.syngress.com

Active Response • Chapter 12 659

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 659

Web Server Attack
Let’s revisit the WWWBoard passwd.txt access attack one last time and see how
Snort_inline mitigates its effects. We add the replace directive to Snort SID 807 so
that any Web traffic that contains the suspect string /wwwboard/passwd.txt will be
altered by Snort_inline before such traffic hits the Web server.The Web server
will actually see a request to /wwwboard/nofile.txt that corresponds to a file that
does not exist. See Figure 12.28 for the modified signature. Note the removal of
the flow option, since Snort_inline does not yet support the stream4 preprocessor.
In addition, the uricontent option has been changed to just content, since the uricon-
tent directive corresponds to the httpinspect preprocessor, which Snort_inline also
does not support.

Figure 12.28 Modified WWWBoard passwd.txt Access Snort Rule (SID 807)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI

/wwwboard/passwd.txt access"; content:"/wwwboard/passwd.txt";

replace:"/wwwboard/nofile.txt"; nocase; reference:arachnids,463;

reference:cve,CVE 1999-0953; reference:nessus,10321; reference:bugtraq,649;

classtype:attempted-recon; sid:807; rev:7;)

Let’s execute our attack and see what happens (see Figure 12.29).

www.syngress.com

660 Chapter 12 • Active Response

Figure 12.27 Snort_Inline Network Architecture

evilhost
(207.174.x.x)

Intnernet

firewall (68.48.x.x)

Web server
(192.168.10.20)

NFS server
(192.168.10.30)

switch

Snort_inline

192.168.10.1

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 660

Figure 12.29 wget Attack Request

[evilhost]$ wget –O passwd.txt –t 1 http://68.48.x.x/wwwboard/passwd.txt

--17:38:32-- http://68.48.x.x/wwwboard/passwd.txt

=> `passwd.txt.6'

Connecting to 68.48.x.x:80... connected.

HTTP request sent, awaiting response... 404 Not Found

17:38:33 ERROR 404: Not Found.

This time, the attack appears to be completely unsuccessful and the request
seems to indicate that the /wwwboard/passwd.txt URL is not even a valid URI.
Instead of viewing a packet trace taken on the external interface of the firewall as
before, we examine a trace taken on the Web server itself in Figure 12.30 (some
packet data and header information has been removed for brevity).

Figure 12.30 wget Attack Packet Trace

[webserver]# tcpdump -i eth0 -s 1500 -l -n -X port 80

tcpdump: listening on eth0

204.174.x.x.48662 > 192.168.10.20.80: S 783689484:783689484(0) win 5840

192.168.10.20.80 > 204.174.x.x.48662: S 2323945504:2323945504(0) ack

783689485 win 5792

204.174.x.x.48662 > 192.168.10.20.80: . ack 1 win 5840

204.174.x.x.48662 > 192.168.10.20.80: P 1:119(118) ack 1 win 5840

0x0000 4500 00aa 801b 4000 3106 3ec1 ccae df18 E.....@.1.>.....

0x0010 c0a8 1e02 be16 0050 2eb6 270d 8a84 9821 P..'....!

0x0020 8018 16d0 dc5a 0000 0101 080a 150b a733 Z.........3

0x0030 0097 fa17 4745 5420 2f77 7777 626f 6172GET./wwwboar

0x0040 642f 6e6f 6669 6c65 2e74 7874 2048 5454 d/nofile.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e78 782e 7878 ost:.68.48.xx.xx

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

192.168.10.20.80 > 204.174.x.x.48662: . ack 119 win 5792

192.168.10.20.80 > 204.174.x.x.48662: P 1:572(571) ack 119 win 5792

0x0000 4500 026f 6215 4000 4006 4c02 c0a8 1e02 E..ob.@.@.L.....

www.syngress.com

Active Response • Chapter 12 661

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 661

Figure 12.30 wget Attack Packet Trace

0x0010 ccae 0000 0000 be16 8a84 9821 2eb6 2783 P.....!..'.

0x0020 8018 16a0 8fd9 0000 0101 080a 0097 fa35 5

0x0030 150b a733 4854 5450 2f31 2e31 2034 3034 ...3HTTP/1.1.404

0x0040 204e 6f74 2046 6f75 6e64 0d0a 4461 7465 .Not.Found..Date

0x0050 3a20 5765 642c 2033 3120 4d61 7220 3230 :.Wed,.31.Mar.20

0x0060 3034 2030 343a 3034 3a34 3620 474d 540d 04.04:04:46.GMT.

0x0070 0a53 6572 7665 723a 2041 7061 6368 652f .Server:.Apache/

0x0080 322e 302e 3438 2028 556e 6978 2920 6d6f 2.0.48.(Unix).mo

0x0090 645f 7373 6c2f 322e 302e 3438 204f 7065 d_ssl/2.0.48.Ope

0x00a0 6e53 534c 2f30 2e39 2e37 630d 0a43 6f6e nSSL/0.9.7c..Con

0x00b0 7465 6e74 2d4c 656e 6774 683a 2033 3235 tent-Length:.325

0x00c0 0d0a 4b65 6570 2d41 6c69 7665 3a20 7469 ..Keep-Alive:.ti

0x00d0 6d65 6f75 743d 3135 2c20 6d61 783d 3130 meout=15,.max=10

0x00e0 300d 0a43 6f6e 6e65 6374 696f 6e3a 204b 0..Connection:.K

0x00f0 6565 702d 416c 6976 650d 0a43 6f6e 7465 eep-Alive..Conte

0x0100 6e74 2d54 7970 653a 2074 6578 742f 6874 nt-Type:.text/ht

0x0110 6d6c 3b20 6368 6172 7365 743d 6973 6f2d ml;.charset=iso-

204.174.x.x.48662 > 192.168.10.20.80: . ack 572 win 6852

204.174.x.x.48662 > 192.168.10.20.80: F 119:119(0) ack 572 win 6852

192.168.10.20.80 > 204.174.x.x.48662: F 572:572(0) ack 120 win 5792

204.174.x.x.48662 > 192.168.10.20.80: . ack 573 win 6852

We see that our attack request displayed in bold in Figure 12.30 has been fun-
damentally altered.The HTTP GET against the URL /wwwboard/passwd.txt has
become a GET request for /wwwboard/nofile.txt. Of course, this new path does
not even exist on the Web server and so the client receives the standard “404 File
Not Found” error.The client has no way of knowing whether the remote
passwd.txt file even exists without further investigation.The attack was thwarted in
such a way that the TCP stream remained intact. It should be noted that in this
particular case, there is in general no legitimate reason why anyone should be
accessing the passwd.txt file. Hence, this attack is a good example of the type of
attack that an IPS should be configured to stop. However, there is one possible
exception: the case of the administrator who is trying to troubleshoot admin-level
access if things are not working properly by verifying that the Web server has per-
mission to open the passwd.txt file. Snort_inline effectively disables the ability to

www.syngress.com

662 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 662

troubleshoot in this way across all source networks contained within the Snort rule
$EXTERNAL_NET variable. No external client can query any URI on the Web
server that contains the string “/wwwboard/passwd.txt”.There is always a tradeoff
between offering a vulnerable service to untrusted networks versus disabling use of
the service altogether with an IPS such as Snort_inline.This just teaches us to be
very careful when deploying this type of technology—we must audit every single
rule that will actively interfere with the network.

NFS mountd Overflow Attack
For our last example, we revisit the NFS mountd overflow attack. First, we
modify Snort SID 316 to replace the content of the mountd attack with the hex
code 0x65, which happens to correspond to the ASCII code for the letter “e”.

Again, we launch our attack from evilhost against the NFS server, but this
time, we take a packet trace from the server itself as shown in Figure 12.31.As
we expect, the critical portion of the attack that instructs the remote system to
point back into the exploit payload has been translated into a harmless series of
“e” characters completely unrelated to the original attack by Snort_inline (see
Figure 12.32).

Figure 12.31 Modified NFS mountd Overflow Snort Rule (SID 316)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd

overflow"; content:"|eb56 5E56 5656 31d2 8856 0b88 561e|"; replace:"|6565

6565 6565 6565 6565 6565 6565|"; reference:cve,CVE-1999-0002;

reference:bugtraq,121; classtype:attempted-admin; sid:316; rev:3;)

Figure 12.32 NFS mountd Overflow Attack

[evilhost]$./mx 68.48.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 68.48.x.x

[nfs_server]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

15:53:59.266187 204.174.x.x.33854 > 192.168.10.30.sunrpc: udp 56 (DF)

15:53:59.267033 192.168.10.30.sunrpc > 204.174.x.x.33854: udp 28 (DF)

15:53:59.267662 204.174.x.x.33854 > 192.168.10.30.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

www.syngress.com

Active Response • Chapter 12 663

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 663

Figure 12.32 NFS mountd Overflow Attack

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b >...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53 (@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8 orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 6565 6565 6565 6565 6565 6565eeeeeeeeeeee

0x0380 6565 8856 2788 5638 b20a 8856 1d88 5626 ee.V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b006 1.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

15:53:59.268454 192.168.10.30.32772 > 204.174.x.x.33854: udp 28 (DF)

www.syngress.com

664 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 664

Damage & Defense…

Intrusion Prevention: An Opinion
Before we end the chapter, it is worth spending a few paragraphs talking
about the dichotomy between firewalls and IDSs. Network-based intru-
sion prevention systems (NIPS) are the subject of much debate and strong
emotions. This sidebar presents those of this book’s editors.

The core purpose of a firewall is to allow or block network traffic
based on how that traffic matches a policy the firewall has been given.
This means it needs to be able to make decisions about whether traffic is
allowed through (or not), very quickly and predictably. As vendors have
learned, customers want firewalls that don’t block traffic for any reason
except policy (for example, not because the firewall is too slow or over-
loaded or misunderstood a protocol). Additionally, it should not block
traffic that the policy creator intended to allow. In short, a firewall must
make a decision quickly and then pass or drop packets as quickly as pos-
sible. In contrast, the core purpose of a network intrusion detection
system is to find attacks/intrusions/events-of-interest in your network
traffic. This means that the IDS must not miss packets because there is too
much traffic. The IDS must not misunderstand a protocol or assume that
the protocol in use is the one normally used on that port. Finally, the IDS
must not decide if traffic is malicious or not without seeing all of it (for
example, allowing traffic to pass after seeing that there is nothing mali-
cious in the TCP connection setup, as a firewall might). In short, an IDS
must not miss any traffic and must constantly recheck its conclusions (for
example, look for a match against a single packet and then look for
matches against the entire stream).

Unfortunately, these two core functions are essentially in opposition
to each other. As such, NIPS are difficult to implement properly. Firewall
vendors who are advertising their products as NIPS think that decisions
can all be made based on simple decisions and that network traffic is
never ambiguous (because at Layer 4 and below it is generally not). They
forget that applications are horribly eccentric and that evading detection
is easy when you can play in the application-layer protocols. IDS vendors
who are advertising their products as NIPS think that making decisions
after the entire connection is completed is an effective way to prevent the
attack, and that false positive rates that customers accept from an IDS will
also be acceptable for an IPS. In our opinion, such viewpoints from IDS
vendors are simply misguided.

www.syngress.com

Active Response • Chapter 12 665

Continued

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 665

An example of a good place for deployment of a NIPS is in front of
critical servers that have application-layer vulnerabilities that can’t be
patched for some reason and are easily and clearly definable. Whatever
you do, understand that IPS cannot be a “silver bullet” that removes the
requirement that you patch and harden systems, apply policy-based fire-
walls, and monitor the network with an IDS.

www.syngress.com

666 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 666

Summary
In this chapter, we explored the concept of active response to intrusion detection
events. We presented three software applications—Snortsam, Fwsnort, and
Snort_inline—that employ a different strategy for reacting to Snort IDS events.
Snortsam is the most flexible of the three in terms of the tools it interacts with
and the Snort rules it can use. It facilitates the modification of various firewall
rulesets in order to block the IP address of an attacker for a configurable period
of time. Snortsam runs as an output plug-in to the Snort IDS, which sends block
requests to a separate daemon that runs on the firewall host and is responsible for
interacting with the firewall at the host level.Attackers are blocked on a per-rule
basis through the use of a new rule directive fwsam. Fwsnort makes use of the
powerful and flexible firewalling code IPtables within the Linux kernel to imple-
ment Snort rules directly within kernel space.Application-layer inspection, a crit-
ical component of most Snort rules, is accomplished through the use of the
IPtables string match module. Fwsnort effectively blocks individual attacks at the
transport layer through the use of TCP resets for TCP sessions or ICMP port-
unreachable messages for UDP packets. Snort_inline acts as a true Intrusion
Prevention System (IPS) and can alter packet data at the application layer in real
time.The most common deployment of Snort_inline is on a Linux system that
has been configured to bridge two Ethernet segments and is therefore not identi-
fiable as a separate hop in the routing path into or from a network. Snort_inline
is based on Snort for its detection engine, but uses the packet-queuing facility of
IPtables for its data source instead of the usual libpcap library.

This chapter simulated two attacks, one against a Web server and the other
against an NFS server, and showed how Snortsam, Fwsnort, and Snort_inline
each implemented a change to the network policy or to individual sessions or
packets as a result of the attack.The open-source community has developed the
technology to actively respond to attempted intrusions; however, actually
deploying this capability requires extremely careful tuning and a healthy respect
for the fact that a network so endowed has the capability to (temporarily) recon-
figure itself.

www.syngress.com

Active Response • Chapter 12 667

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 667

Solutions Fast Track

Active Response vs. Intrusion Prevention

� The capability to actively respond to an event generated by an Intrusion
Detection System (IDS) requires a mechanism by which packets can be
blocked or altered at the direction of the IDS.

� Deploying active response on a network requires careful tuning in order
to not cause more harm than good due to the fact that false positives are
commonly generated by IDSs.

� Attack simulations coupled with the use of a good Ethernet sniffer
provide a good way to test the exact response that may be elicited from
an active response system.

Snortsam

� Snortsam modifies various firewall rulesets to actively block an attacker
based on the detection of certain specially modified Snort rules that
contain the fwsam field.

� Snortsam is implemented both as a Snort output plug-in and as a
daemon that runs on the firewall host system. Both components are
required for Snortsam to function properly.

� Snortsam blocks attackers at the network layer based on IP address.

Fwsnort

� Fwsnort constructs an IPtables ruleset designed to mimic the rules
contained within the Snort rules files.

� Application-layer attacks are detected by Fwsnort by performing simple
string matches on application-layer data.

� Fwsnort blocks specific attacks at the transport layer through the use of
TCP reset packets or ICMP port-unreachable messages.

www.syngress.com

668 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 668

Snort_inline

� Snort_inline blocks or alters packets in real time as they traverse the
interfaces of a Linux system that bridges together two segments of an
Ethernet network.

� The payload of an attack can be nullified through the modification of
application-layer data by Snort_inline.

� Snort_inline acts as an IPS that is based on the Snort detection engine.

Q: Should an active response system be configured to block port scans?

A: Contrary to popular belief, port scans, while extremely common, are
becoming less and less prevalent as a precursor to a more advanced attack.A
smart attacker will “hide in plain sight” by initially only making legitimate
connections to those services for which the attacker actually possesses
exploits.After all, there is no need to set off alarm bells with a broad port
scan, especially when the knowledge that some arbitrary service is open may
not be particularly useful to the attacker. Hence, this, combined with the fact
that port scans may easily be spoofed, make port scans a perfect example of a
type of “attack” that should not set off an active response system.

Q: What is the optimal length of time an attacker should be blocked by an
active response system such as Snortsam?

A: This depends on several factors, including the severity of the attack, the local
security policy, and the nature of the applications running on the network
being attacked. For most situations, it makes sense to try to minimize the
length of time a blocking rule is in effect. For example, if an attacker is on a
large corporate network that is NAT’ed behind a firewall, then blocking the
IP address from which the attack originates will not only block the real cul-

www.syngress.com

Active Response • Chapter 12 669

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 669

prit of the attack but also everyone else who is behind the same firewall. If
you are a company and this large corporate network happens to belong to a
client of yours, then there could be real problems.

Q: Does an active response system make my network more vulnerable to a
denial-of-service DoS) attack?

A: Potentially. Not only is the network susceptible to the standard DoS attacks
that are designed to chew up available bandwidth, but a clever attacker may
be able to fool the active response system into altering traffic or access con-
trols to work against legitimate systems.

Q: Can an active response system effectively protect a network from worms and
viruses that are transmitted via e-mail attachments?

A: While blocking virus and worm propagation is normally better accomplished
by specialized code deployed in the mail gateway itself, an inline active
response system can assist in this process. Once a Snort rule can be developed
based on the content of a worm binary, an inline active response system such
as Snort_inline or Fwsnort can alter the packets containing the worm or
force TCP sessions containing the worm to be destroyed.

Q: If Snort_inline can protect against inbound threats from outside my network,
can it also nullify outbound attacks originating from within my network?

A: Yes.The difference between protecting against inbound vs. outbound attacks
is essentially only of configuration. In fact, the Honeynet Project (see
www.honeynet.org) uses Snort_inline as a tool for protecting outside net-
works from being attacked by compromised systems on a honeynet.

Q: How widely deployed are IPSs today?

A: This is a tough one to answer, but let’s just mention a couple of things. First,
in April 2003, Network Associates purchased IntruVert Networks (a commer-
cial IPS manufacturer) for $100 million in cash.This acquisition took place at
a time when the U.S. economy was not at its best, and so demonstrates that
there is significant interest in the marketplace for intrusion prevention tech-
nology. Second, the actual deployment of IPSs most likely varies from
industry to industry. Widespread adoption among financial institutions is
probably lower than in other areas, since any legitimate sessions that are
blocked erroneously could end up costing such institutions money.

www.syngress.com

670 Chapter 12 • Active Response

295_Snort_2e_12.qxd 5/5/04 6:10 PM Page 670

